
Lecture 6 
part 2

Index Construction and Search 



Index Implementation

• Bag of words
• Inverted files
• Signature files
• Hashing
• …



Inverted Files

• Each document is assigned a list of keywords or 
attributes.

• Each keyword (attribute) is associated with 
operational relevance weights.

• An inverted file is the sorted list of keywords
(attributes), with each keyword having links to the 
documents containing that keyword.



1         6   9  11       17  19     24    28         33              40            46   50         55        60

This is a text.  A text has many words.  Words are made from letters.

letters 60 …
made 50 …
many 28 …
text 11, 19 …
words 30, 40 …

Vocabulary Occurrences

Vocabulary space: the vocabulary grows as O(nβ), β: 0.4~0.6
Vocabulary for 1GB of TREC-2 collection: 5MB 

(before stemming and normalization)
Occurrences: the extra space O(n)

30% ~ 40% of the text size

Text

addressing granularity:
(1) inverted list –

word positions
character positions

(2) inverted file –
document

Inverted Index



Block Addressing

• Full inverted indices
• Point to exact occurrences

• Blocking addressing
• Point to the blocks where the word appears
• Pointers are smaller
• 5% overhead over the text size

Block1                  Block2                          Block3                             Block 4
This is a text.  A text has many words.  Words are made from letters.

letters 4 …
made 4 …
many 2 …
text 1, 2 …
words 3 …

Vocabulary Occurrences Text

Inverted index

block:
fixed size blocks,
files, documents, 
Web pages, …



Dictionary data structures

• Two main choices:
• Hash table
• Tree

• Some IR systems use hashes, some trees



Hashes

• Each vocabulary term is hashed to an integer
• Pros:

• Lookup is faster O(1)

• Cons:
• No easy way to find minor variants:

• judgment/judgement
• No prefix search [tolerant  retrieval]
• If vocabulary keeps going, need to occasionally do the expensive operation of 

rehashing everything



Trees

• Simplest: Binary tree
• More usual: B-trees
• Pros:

• Solves the prefix problem (terms starting with hyp)

• Cons:
• Slower: O(log M)  [and this requires balanced tree]
• Rebalancing binary trees is expensive

• But B-trees mitigate the rebalancing problem



Tree: Dictionary



Tree: Dictionary



Searching

• Vocabulary search
• Identify the words and patterns in the query
• Search them in the vocabulary

• Retrieval of occurrences
• Retrieve the lists of occurrences of all the words

• Manipulation of occurrences
• Solve phrases, proximity, or Boolean operations
• Find the exact word positions when block addressing is 

used



Suffix Trees and Suffix 
Arrays

• A text is regarded as a long string.

• Each position corresponds to a semi-infinite string.

• Suffix: a string that goes from a text position to 
the end of the text

• Each suffix is uniquely identified by its position
no structures and no keywords



This is a text.  A text has many words.  Words are made from letters.

text.  A text has many words.  Words are made from letters.

text has many words.  Words are made from letters.

many words.  Words are made from letters.

Words are made from letters.

made from letters.

letters.

Text

Suffixes

Index points are selected from the text, which
point to the beginning of the text positions which
are retrievable.



Reuters RCV1(Reuters Corpus Volume 1) documents

Reuters-21578 



Reuters RCV1 statistics

• symbol statistic value
• N documents 800,000
• L avg. # tokens per doc 200
• M terms (= word types) 400,000
• avg. # bytes per token 6

(incl. spaces/punct.)

• avg. # bytes per token 4.5
(without spaces/punct.)

• avg. # bytes per term7.5
• non-positional postings 100,000,000

4.5 bytes per word token vs. 7.5 bytes per word type: why?



Recall IIR1 index construction
• Documents are parsed to extract words and these 

are saved with the Document ID.

I did enact Julius
Caesar I was killed 
i' the Capitol; 
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Doc 2

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2
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		hath		2
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Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Key step
• After all documents have been 

parsed, the inverted file is sorted 
by terms. 

We focus on this sort step.
We have 100M items to sort.
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Scaling index construction

• In-memory index construction does not scale.
• How can we construct an index for very large collections?
• Taking into account the hardware constraints we just learned 

about . . .
• Memory, disk, speed etc.



Sort-based Index construction

• As we build the index, we parse docs one at a time.
• While building the index, we cannot easily exploit compression tricks  (you can, 

but much more complex)

• The final postings for any term are incomplete until the end.
• At 12 bytes per postings entry, demands a lot of space for large collections.
• T = 100,000,000 in the case of RCV1

• So … we can do this in memory in 2008, but typical collections are much larger.  
E.g. New York Times provides index of >150 years of newswire

• Thus: We need to store intermediate results on disk.



Use the same algorithm for disk?

• Can we use the same index construction algorithm for larger 
collections, but by using disk instead of memory?

• No: Sorting T = 100,000,000 records on disk is too slow – too many 
disk seeks.

• We need an external sorting algorithm.



Bottleneck

• Parse and build postings entries one doc at a time
• Now sort postings entries by term (then by doc within each term)
• Doing this with random disk seeks would be too slow – must sort 

T=100M records

If every comparison took 2 disk seeks, and N items could be
sorted with N log2N comparisons, how long would this take?





BSBI: Blocked sort-based Indexing (Sorting 
with fewer disk seeks)
• 12-byte (4+4+4) records (term, doc, freq).
• These are generated as we parse docs.
• Must now sort 100M such 12-byte records by term.
• Define a Block ~ 10M such records

• Can easily fit a couple into memory.
• Will have 10 such blocks to start with.

• Basic idea of algorithm:
• Accumulate postings for each block, sort, write to disk.
• Then merge the blocks into one long sorted order.





Sorting 10 blocks of 10M records

First, read each block and sort within: 
Quicksort takes 2N ln N expected steps
In our case 2 x (10M ln 10M) steps

Exercise: estimate total time to read each block from disk and 
quicksort it.
10 times this estimate - gives us 10 sorted runs of 10M records each.
Done straightforwardly, need 2 copies of data on disk
But can optimize this





How to merge the sorted runs?

• Can do binary merges, with a merge tree of log210 = 4 layers.

• During each layer, read into memory runs in blocks of 10M, merge, write back.

Disk

1

3 4

2
2

1

4

3

Runs being
merged.

Merged run.



How to merge the sorted runs?

• But it is more efficient to do a n-way merge, where you are reading from all 
blocks simultaneously

• Providing you read decent-sized chunks of each block into memory, you’re not 
killed by disk seeks





Remaining problem with sort-based algorithm

• Our assumption was: we can keep the dictionary in memory.
• We need the dictionary (which grows dynamically) in order to 

implement a term to termID mapping.
• Actually, we could work with term,docID postings instead of 

termID,docID postings . . .
• . . . but then intermediate files become very large. (We would end up 

with a scalable, but very slow index construction method.)



SPIMI: 
Single-pass in-memory indexing

• Key idea 1: Generate separate dictionaries for each block – no need to 
maintain term-termID mapping across blocks.

• Key idea 2: Don’t sort. Accumulate postings in postings lists as they 
occur.

• With these two ideas we can generate a complete inverted index for 
each block.

• These separate indexes can then be merged into one big index.



SPIMI-Invert

• Merging of blocks is analogous to BSBI.



Distributed indexing

• For web-scale indexing (don’t try this at home!):
must use a distributed computing cluster

• Individual machines are fault-prone
• Can unpredictably slow down or fail

• How do we exploit such a pool of machines?



Google data centers
• Google data centers mainly contain commodity 

machines.
• Data centers are distributed around the world.
• 「海王星計畫」 in Taiwan (Changhua County)
• Estimate: a total of 1 million servers, 3 million 

processors/cores (Gartner 2007)
• Estimate: Google installs 100,000 servers each 

quarter.
• Based on expenditures of 200–250 million dollars per 

year
• This would be 10% of the computing capacity of 

the world!?!





Distributed indexing

• Maintain a master machine directing the indexing job – considered 
“safe”.

• Break up indexing into sets of (parallel) tasks.
• Master machine assigns each task to an idle machine from a pool.



Divide and Conquer 

1TB

200G

200G

200G

200G

200G



Current Tools

• Parallel Programming models
• Shared memory (Java Threads)
• Message passing interface (MPI)

Message Passing

P1 P2 P3 P4 P5

Shared Memory

P1 P2 P3 P4 P5

M
em

o
ry



Managing Multiple Workers

• Difficult because
• We don’t know the order in which workers run
• We don’t know when workers interrupt each other
• We don’t know the order in which workers access shared data

• Thus, we need:
• Semaphores (lock, unlock)
• Conditional variables (wait, notify, broadcast)

• Still, lots of problems:
• Deadlock, livelock, …



Source: Ricardo Guimarães 
H



Parallel tasks

• We will use two sets of parallel tasks
• Parsers
• Inverters

• Break the input document corpus into splits
• Each split is a subset of documents (corresponding to blocks in 

BSBI/SPIMI)



Parsers

• Master assigns a split to an idle parser machine
• Parser reads a document at a time and emits (term, doc) pairs
• Parser writes pairs into j partitions
• Each partition is for a range of terms’ first letters

• (e.g., a-f, g-p, q-z) – here j=3.

• Now to complete the index inversion



Inverters

• An inverter collects all (term,doc) pairs (= postings) for one term-
partition.

• Sorts and writes to postings lists



Data flow

splits

Parser

Parser

Parser

Master

a-f g-p q-z

a-f g-p q-z

a-f g-p q-z

Inverter

Inverter

Inverter

Postings

a-f

g-p

q-z

assign assign

Map
phase

Segment files Reduce
phase



What’s the point?

• Hide system-level details from the developers
• Using Commodity Machines to Scale up the power !





What is MapReduce?

• Parallel programming model for clusters of 
commodity machines

• Platform for reliable, scalable parallel computing
• Abstracts issues of parallel environment from 

programmer.



MapReduce Implementations

• Google has a proprietary implementation in C++
• Bindings in Java, Python

• Hadoop is an open-source implementation in Java
• Development led by Yahoo, used in production
• Now an Apache project
• Rapidly expanding software ecosystem



Introduction to Hadoop

• Apache Hadoop
• Open Source – Apache Foundation project

• Apache Platinum Sponsor

• History
• Started in 2005 by Doug Cutting
• Yahoo! became the primary contributor in 2006

• Portable
• Written in Java
• Runs on commodity hardware
• Linux, Mac OS/X, Windows, and Solaris

49



Hadoop 的擴展性以及容錯機制

• 擴展性：Hadoop 可以通過增加附加節點輕易的擴展儲存能力或
處理效能，且不需要修改到程式邏輯

• 高容錯：Hadoop 可以設定 data replication，將切成小 block 的檔
案複製成多份，分別放到不同的 Data Node 中，並且由 Name 
Node 控管儲存位置。所以如果某天運行時，其中一個 Data Node 
失效、毀損造成資料遺失，還可以從其他台 Data Node 可以取得
該檔案的副本資料



Growing Hadoop Ecosystem
• Hadoop Core

• Distributed File System
• MapReduce Framework

• Pig (initiated by Yahoo!)
• Parallel Programming Language and Runtime

• Hbase (initiated by Powerset)
• Table storage for semi-structured data

• Zookeeper (initiated by Yahoo!)
• Coordinating distributed systems

• Hive (initiated by Facebook)
• SQL-like query language and metastore

51



Hadoop Workflow

Hadoop Cluster
You



Hadoop Workflow

Hadoop Cluster
You

1. Load data into HDFS



Hadoop Workflow

Hadoop Cluster
You

1. Load data into HDFS

2. Develop code locally



Hadoop Workflow

Hadoop Cluster
You

1. Load data into HDFS

2. Develop code locally

3. Submit MapReduce job



Hadoop Workflow

Hadoop Cluster
You

1. Load data into HDFS

2. Develop code locally

3. Submit MapReduce job

4. Retrieve data from HDFS



MapReduce

• The index construction algorithm we just described is an instance of 
MapReduce.

• MapReduce (Dean and Ghemawat 2004) is a robust and conceptually 
simple framework for

• distributed computing …
• … without having to write code for the distribution part.
• They describe the Google indexing system (ca. 2002) as consisting of a 

number of phases, each implemented in MapReduce.



MapReduce

• Index construction was just one phase.
• Another phase: transforming a term-partitioned index into document-

partitioned index.
• Term-partitioned: one machine handles a subrange of terms
• Document-partitioned: one machine handles a subrange of documents

• Most search engines use a document-partitioned index … better load 
balancing, etc.)



Schema for index construction in MapReduce

• Schema of map and reduce functions
map: input → list(k, v)     reduce: (k,list(v)) → output

• Instantiation of the schema for index construction
map: web collection → list(termID, docID)
reduce: (<termID1, list(docID)>, <termID2, list(docID)>, …) → (postings list1, 

postings list2, …)
• Example for index construction

map: d2 : C died. d1 : C came, C c’ed. → (<C, d2>, <died,d2>, <C,d1>, <came,d1>, 
<C,d1>, <c’ed, d1>

reduce: (<C,(d2,d1,d1)>, <died,(d2)>, <came,(d1)>, <c’ed,(d1)>)  →  
(<C,(d1:2,d2:1)>, <died,(d2:1)>, <came,(d1:1)>, <c’ed,(d1:1)>)



Challenge
• Sorting?

• How to perform sorting using MapReduce?



HDFS

Read 
Input File

Map Reduce HDFS

Write
Output 
File

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = new Job(conf, "wordcount"); 
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setJarByClass(WordCount.class);

job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);

FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.waitForCompletion(true);  //工作執行！

}
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Parallel Programming 
What is your name?
What is your name?
My name is Mickey 
Hello Mickey
Hello Mickey
Hello Hello Hello

1 Parallel
1 Programming
3 Name
5 Hello

:
: 
:



HDFS

Read 
Input File

Map Reduce HDFS

Write
Output 
Filek

v
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Map
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vReduce
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k

vHDFS

Write
Output 
File

Read 
output 
File

Parallel Programming 
What is your name?
What is your name?
My name is Mickey 
Hello Mickey
Hello Mickey
Hello Hello Hello

Parallel  1
Programming  1 
Name  3
Hello  5
Mickey  3

: 
:

1 Parallel
1 Programming
3 Name
5 Hello

:
: 
:



Dynamic indexing

• Up to now, we have assumed that collections are static.
• They rarely are: 

• Documents come in over time and need to be inserted.
• Documents are deleted and modified.

• This means that the dictionary and postings lists have to be modified:
• Postings updates for terms already in dictionary
• New terms added to dictionary



Simplest approach

• Maintain “big” main index
• New docs go into “small” auxiliary index
• Search across both, merge results
• Deletions

• Invalidation bit-vector for deleted docs
• Filter docs output on a search result by this invalidation bit-vector

• Periodically, re-index into one main index



Issues with main and auxiliary indexes

• Problem of frequent merges – you touch stuff a lot
• Poor performance during merge
• Actually:

• Merging of the auxiliary index into the main index is efficient if we keep a separate file for 
each postings list.

• Merge is the same as a simple append.
• But then we would need a lot of files – inefficient for O/S.

• Assumption for the rest of the lecture: The index is one big file.
• In reality: Use a scheme somewhere in between (e.g., split very large postings 

lists, collect postings lists of length 1 in one file etc.)



Logarithmic merge

• Maintain a series of indexes, each twice as large as the previous one.
• Keep smallest (Z0) in memory
• Larger ones (I0, I1, …) on disk
• If Z0 gets too big (> n), write to disk as I0

• or merge with I0 (if I0 already exists) as Z1

• Either write merge Z1 to disk as I1 (if no I1)
• Or merge with I1 to form Z2

• etc.



Logarithmic merge



Logarithmic merge

• Auxiliary and main index: index construction time is O(T2) as each 
posting is touched in each merge.

• Logarithmic merge: Each posting is merged O(log T) times, so 
complexity is O(T log T)

• So logarithmic merge is much more efficient for index construction
• But query processing now requires the merging of O(log T) indexes

• Whereas it is O(1) if you just have a main and auxiliary index



Further issues with multiple indexes

• Corpus-wide statistics are hard to maintain
• E.g., when we spoke of spell-correction: which of several corrected 

alternatives do we present to the user?
• We said, pick the one with the most hits

• How do we maintain the top ones with multiple indexes and 
invalidation bit vectors?

• One possibility: ignore everything but the main index for such ordering

• Will see more such statistics used in results ranking



Dynamic indexing at search engines

• All the large search engines now do dynamic indexing
• Their indices have frequent incremental changes

• News items, new topical web pages
• Sarah Palin …

• But (sometimes/typically) they also periodically reconstruct the index 
from scratch

• Query processing is then switched to the new index, and the old index is then 
deleted





Other sorts of indexes

• Positional indexes
• Same sort of sorting problem … just larger

• Building character n-gram indexes:
• As text is parsed, enumerate n-grams.
• For each n-gram, need pointers to all dictionary terms containing it – the 

“postings”.
• Note that the same “postings entry” will arise repeatedly in parsing the docs –

need efficient hashing to keep track of this.
• E.g., that the trigram uou occurs in the term deciduous will be discovered on each text 

occurrence of deciduous
• Only need to process each term once

Why?
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