Lecture 6
part 2
Index Construction and Search



Index Implementation

* Bag of words
* Inverted files
 Signature files
* Hashing



Inverted Files

* Each document is assigned a list of or

* Each keyword (attribute) is associated with
operational

* An inverted file is the
(attributes), with each keyword having
containing that keyword.
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This is a text. A text has many words. Words are made from letters.

Inverted Index \ Text

/

Vocabulary

letters
made
many
text
words

Vocabulary space: the vocabulary grows as O(nf), 3: 0.4~0.6
Vocabulary for 1GB of TREC-2 collection: 5MB
(before stemming and normalization)

Occurrences: the extra space O(n)
30% ~ 40% of the text size



Block Addressing

e Full inverted indices

* Pointto

exact occurrences

* Blocking addressing

* Pointto

the blocks where the word appears

* Pointers are smaller
* 5% overhead over the text size

Block]1 Block?2 Block3 Block 4
This is a text, A text has man* words. Words areé made from letters,
Vocabulary Occurrences Text
letters 4
made 4 .. ,
many > Inverted index
text 1,2 ..
words 3 ..




Dictionary data structures

e Two main choices:
 Hash table
* Tree

 Some IR systems use hashes, some trees
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Hashes

e Each vocabulary term is hashed to an integer

* Pros:
* Lookup is faster O(1)

* Cons:
* No easy way to find minor variants:
e judgment/judgement
* No prefix search [tolerant retrieval]

* |f vocabulary keeps going, need to occasionally do the expensive operation of
rehashing everything



Trees

e Simplest: Binary tree

2 Q
* More usual: B-trees Q OC O

* Pros:
 Solves the prefix problem (terms starting with hyp)

e Cons:

» Slower: O(log M) [and this requires balanced tree]

* Rebalancing binary trees is expensive
e But B-trees mitigate the rebalancing problem
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Tree: Dictionary
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Tree: Dictionary
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Searching

* Vocabulary search
* |dentify the words and patterns in the query
e Search them in the vocabulary

e Retrieval of occurrences
e Retrieve the lists of occurrences of all the words

* Manipulation of occurrences
* Solve phrases, proximity, or Boolean operations

* Find the exact word positions when block addressing is
used



Suffix Trees and Suffix
Arrays

* A text is regarded as a long string.
» Each position corresponds to a semi-infinite string.

+ Suffix: a string that goes from a text position to
the end of the text

» Each suffix is uniquely identified by its position
no structures and no keywords



This is a text. A text has many words. Words are made from letters.
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text. A text has many words. %Words are made from letters.

text has many words. Words are made fron’; letters.

many words. Words are made from letters.

. Words are%made from§ letters.
Suffixes

made from letters.

letters.

are selected from the text, which
point to the of the text positions which
are



Reuters RCVl(Reuters Corpus Volume 1) documents

REUTERS B Reuters-21578

You are here: Home » News » ScieEnce » Article

Gotoa Section: LS. International Business  Marksts  Politics  Entertainment  Technology  Sports Oddly Enout

Extreme conditions create rare Antarctic clouds

Tue Aug 1, 2005 3:20am ET

Email This Article | Print This Article | Reprints

Text [+
SYDMNEY (Reuters) - Rare, mother-of-pearl colored clouds
caused by extreme weather conditions above Antarctica are a
possible indication of global warming, Australian scientists said on

Tuesday.

Known as nacreous clouds, the spectacular formations showing delicate
wisps of colors were photographed in the sky over an Australian
meteorological base at Mawson Station on July 25,




Reuters RCV1 statistics

statistic

documents

avg. # tokens per doc

terms (= word types)
avg. # bytes per token

(incl. spaces/punct.)

avg. # bytes per token

(without spaces/punct.)

avg. # bytes per term7.5
non-positional postings

4.5 bytes per word token vs. 7.5 bytes per word type: why?

value

800,000
200
400,000
6

4.5

100,000,000



Recall IR1 index construction

 Documents are parsed to extract words and these

are saved with the Document ID.

Doc 1

| did enact Julius
Caesar | was killed
I' the Capitol;
Brutus killed me.

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious
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slide 7

		Term		Doc #
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		enact		1

		julius		1

		caesar		1

		I		1

		was		1

		killed		1

		i'		1

		the		1

		capitol		1

		brutus		1

		killed		1

		me		1

		so		2

		let		2

		it		2

		be		2

		with		2

		caesar		2

		the		2

		noble		2

		brutus		2

		hath		2

		told		2

		you		2

		caesar		2

		was		2

		ambitious		2






Key step

» After all documents have been
parsed, the inverted file is sorted
by terms.

4

We focus on this sort step.
We have 100M items to sort.
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Scaling index construction

* In-memory index construction does not scale.
* How can we construct an index for very large collections?

e Taking into account the hardware constraints we just learned
about . ..

* Memory, disk, speed etc.



Sort-based Index construction

* As we build the index, we parse docs one at a time.

 While building the index, we cannot easily exploit compression tricks (you can,
but much more complex)

* The final postings for any term are incomplete until the end.
* At 12 bytes per postings entry, demands a lot of space for large collections.

 T=100,000,000 in the case of RCV1

* So ... we can do this in memory in 2008, but typical collections are much larger.
E.g. New York Times provides index of >150 years of newswire

* Thus: We need to store intermediate results on disk.



Use the same algorithm for disk?

e Can we use the same index construction algorithm for larger
collections, but by using disk instead of memory?

* No: Sorting T = 100,000,000 records on disk is too slow —too many
disk seeks.

* We need an external sorting algorithm.



Bottleneck

e Parse and build postings entries one doc at a time
* Now sort postings entries by term (then by doc within each term)

* Doing this with random disk seeks would be too slow — must sort
T=100M records

If every comparison took 2 disk seeks, and N items could be
sorted with N log,N comparisons, how long would this take?




Reuters collection example (approximate #s)
100,000,000 records
Nlog2(N) is = 2,657,542,475.91 comparisons

2 disk seeks per comparison = 13,287,712.38 seconds x 2
= 26,575,424.76 seconds

= 442 923.75 minutes

= 7,382.06 hours

= 307.59 days




BSBI: Blocked sort-based Indexing (Sorting
with fewer disk seeks)
e 12-byte (4+4+4) records (term, doc, freq).

* These are generated as we parse docs.
* Must now sort 100M such 12-byte records by term.

e Define a Block ~ 10M such records

e Can easily Wle into memory.
* Will have [10 such blocks to start with.

* Basic idea of algorithm:
* Accumulate postings for each block, sort, write to disk.
 Then merge the blocks into one long sorted order.



postings

to be merged brutus  d2

brutus d3

brutus d3 brutus d2 caesar dl
caesar d4 caesar dl caesar d4 merged
noble d3 julius  dl1 — julius  dl1 postings

with d4 killed d2 killed d2

noble d3

with d4

< i

disk




Sorting 10 blocks of 10M records

BFirst, read each block and sort within:

BMQuicksort takes 2N In N expected steps
BMIn our case 2 x (10M In 10M) steps

B Exercise: estimate total time to read each block from disk and
quicksort it.

W10 times this estimate - gives us 10 sorted runs of 10M records each.

BMDone straightforwardly, need 2 copies of data on disk
MBut can optimize this



BSBINDEXCONSTRUCTION( )

1 n—0

2 while (all documents have not been processed)
3 don+<—n+1

4 block < PARSENEXTBLOCK()

5 BSBI-INVERT(block)

6 WRITEBLOCKTODISK(block, f,)

7 MERGEBLOCKS(f1,..., fn; fmerged)



How to merge the sorted runs?

* Can do binary merges, with a merge tree of log,10 = 4 layers.

* During each layer, read into memory runs in blocks of 10M, merge, write back.

]
2
! » | 2 | | Merged run.
3 4
/ 3
Runs being 4

merged.




How to merge the sorted runs?

e But it is more efficient to do a n-way merge, where you are reading from all
blocks simultaneously

* Providing you read decent-sized chunks of each block into memory, you’re not
killed by disk seeks



Analysns of BSBI

¢ 12-byte records (term, doc, meta-data)

Need to sort T= 100,000,000 such 12-byte records by term
Define a block to have 1,600,000 such records

* can easily fit a couple blocks in memory

o we will be working with 64 such blocks

64 blocks * 1,600,000 records * 12 bytes = 1,228,800,000 bytes
Nlog2N comparisons is 5,584,577,250.93

2 touches per comparison at memory speeds (10e-6 sec) =

1 ® 55,845.77 seconds = 930.76__{min =15.5 hours




Remaining problem with sort-based algorithm

e OQur assumption was: we can keep the dictionary in memory.

* We need the dictionary (which grows dynamically) in order to
implement a term to termID mapping.

e Actually, we could work with term,doclD postings instead of
termID,doclID postings . ..

* ... but then intermediate files become very large. (We would end up
with a scalable, but very slow index construction method.)



SPIMI:
Single-pass in-memory indexing

* Key idea 1: Generate separate dictionaries for each block — no need to
maintain term-termID mapping across blocks.

* Key idea 2: Don’t sort. Accumulate postings in postings lists as they
occur.

* With these two ideas we can generate a complete inverted index for
each block.

* These separate indexes can then be merged into one big index.



SPIMI-Invert

SPIMI-INVERT(token_stream)
1 output_file = NEWFILE()
dictionary = NEWHASH()
while (free memory available)
do token «— next(token_stream)
if term(token) & dictionary
then postings_list = ADDTODICTIONARY(dictionary, term(token))
else postings_list = GETPOSTINGSLIST(dictionary, term(token))
if full(postings_list)
9 then postings_list = DOUBLEPOSTINGSLIST(dictionary, term(token))
10 ADDTOPOSTINGSLIST(postings_list, docID(token))
11 sorted_terms < SORTTERMS(dictionary)
12 WRITEBLOCKTODISK (sorted terms, dictionary, output_file)
13 return output_file

00 ~NO O W

* Merging of blocks is analogous to BSBI.



Distributed indexing

* For web-scale indexing (don’t try this at home!):
must use a distributed computing cluster

* Individual machines are fault-prone
* Can unpredictably slow down or fail

* How do we exploit such a pool of machines?



Google data centers

* Google data centers mainly contain commodity
machines.

e Data centers are distributed around the world.
« [8FE 2512 | in Taiwan (Changhua County)

e Estimate: a total of 1 million servers, 3 million
processors/cores (Gartner 2007)

* Estimate: Google installs 100,000 servers each
quarter.
* Based on expenditures of 200-250 million dollars per
year

* This would be 10% of the computing capacity of
the world!?!
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Distributed indexing

* Maintain a master machine directing the indexing job — considered
“safe”.

* Break up indexing into sets of (parallel) tasks.
* Master machine assigns each task to an idle machine from a pool.



Divide and Conquer

1TR



Current Tools

* Parallel Programming models
e Shared memory (Java Threads)
* Message passing interface (MPI)

Shared Memory

\ 4

\ 4

Message Passing




Managing Multiple Workers

* Difficult because
 We don’t know the order in which workers run
 We don’t know when workers interrupt each other
* We don’t know the order in which workers access shared data

* Thus, we need:
* Semaphores (lock, unlock)
e Conditional variables (wait, notify, broadcast)

e Still, lots of problems:
e Deadlock, livelock, ...






Parallel tasks

* We will use two sets of parallel tasks
* Parsers
* Inverters

* Break the input document corpus into splits

* Each split is a subset of documents (corresponding to blocks in
BSBI/SPIMI)



Parsers

* Master assigns a split to an idle parser machine
* Parser reads a document at a time and emits (term, doc) pairs
* Parser writes pairs into j partitions

e Each partition is for a range of terms’ first letters
* (e.g., a-f, g-p, g-z) — here j=3.
* Now to complete the index inversion



Inverters

* An inverter collects all (term,doc) pairs (= postings) for one term-
partition.

* Sorts and writes to postings lists



Data flow

Reduce
phase

Map

phase Segment files



What’s the point?

* Hide system-level details from the developers
e Using Commodity Machines to Scale up the power !
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What is MapReduce?

* Parallel programming model for clusters of
commodity machines

* Platform for reliable, scalable parallel computing

* Abstracts issues of parallel environment from
programmer.



MapReduce Implementations

* Google has a proprietary implementation in C++
* Bindings in Java, Python

* Hadoop is an open-source implementation in Java
* Development led by Yahoo, used in production
* Now an Apache project
* Rapidly expanding software ecosystem



Introduction to Hadoop

* Apache Hadoop

* Open Source — Apache Foundation project
* Apache Platinum Sponsor

* History

 Started in 2005 by Doug Cutting
* Yahoo! became the primary contributor in 2006

e Portable
* Written in Java

* Runs on commodity hardware
e Linux, Mac OS/X, Windows, and Solaris
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Growing Hadoop Ecosystem

* Hadoop Core

 Distributed File System
* MapReduce Framework

* Pig (initiated by Yahoo!)
 Parallel Programming Language and Runtim

* Hbase (initiated by Powerset)
 Table storage for semi-structured data

e Zookeeper (initiated by Yahoo!)

* Coordinating distributed systems

* Hive (initiated by Facebook)

* SQL-like query language and metastore

The Apache Software Foundation

%= http://www.apache.org/




Hadoop Workflow

Hadoop Cluster
You



Hadoop Workflow

\I.Load data into HDFS

Hadoop Cluster
You
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Hadoop Workflow

/ \l.l.oad data into HDFS

2. Develop code locally

3. Submit MapReduce job
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Hadoop Workflow

/ \Ll.oad data into HDFS

2. Develop code locally

3. Submit MapReduce job

—

Hadoop Cluster
You

4. Retrieve data from HDFS



MapReduce

* The index construction algorithm we just described is an instance of
MapReduce.

 MapReduce (Dean and Ghemawat 2004) is a robust and conceptually
simple framework for

e distributed computing ...
e ... without having to write code for the distribution part.

* They describe the Google indexing system (ca. 2002) as consisting of a
number of phases, each implemented in MapReduce.



MapReduce

* Index construction was just one phase.

* Another phase: transforming a term-partitioned index into document-
partitioned index.
* Term-partitioned: one machine handles a subrange of terms
* Document-partitioned: one machine handles a subrange of documents

* Most search engines use a document-partitioned index ... better load
balancing, etc.)



Schema for index construction in MapReduce

* Schema of map and reduce functions
map: input = list(k, v) reduce: (k,list(v)) = output
* Instantiation of the schema for index construction
map: web collection = list(termID, doclD)

reduce: (<termlID1, list(docID)>, <termID2, list(doclID)>, ...) = (postings list1,
postings list2, ...)

 Example for index construction

map: d2 : Cdied. d1: Ccame, C c’ed. = (<C, d2>, <died,d2>, <C,d1>, <came,d1>,
<C,d1>, <c’ed, d1>

reduce: (<C,(d2,d1,d1)>, <died,(d2)>, <came,(d1)>, <c’ed,(d1)>) =
(<C,(d1:2,d2:1)>, <died,(d2:1)>, <came,(d1:1)>, <c’ed,(d1:1)>)



Challenge

 Sorting?

a[0] all] a[2] a[3] a[4] alS] a[6] a[7] a[8] a[9]

* How to perform sorting using MapReduce?



public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = new Job(conf, "wordcount");
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setJarByClass(WordCount.class);

job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);

FileInputFormat.addInputPath(job, new Path(args[@]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.waitForCompletion(true); //I{EBIT!
}
Read Write
Input File

-
HDFS







Read Write
Input File

C
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Dynamic indexing

* Up to now, we have assumed that collections are static.

* They rarely are:
e Documents come in over time and need to be inserted.
e Documents are deleted and modified.

* This means that the dictionary and postings lists have to be modified:
* Postings updates for terms already in dictionary
* New terms added to dictionary



Simplest approach

* Maintain “big” main index
* New docs go into “small” auxiliary index
e Search across both, merge results

* Deletions
* |Invalidation bit-vector for deleted docs
* Filter docs output on a search result by this invalidation bit-vector

* Periodically, re-index into one main index



Issues with main and auxiliary indexes

* Problem of frequent merges — you touch stuff a lot
* Poor performance during merge

e Actually:

* Merging of the auxiliary index into the main index is efficient if we keep a separate file for
each postings list.

* Merge is the same as a simple append.
e But then we would need a lot of files — inefficient for O/S.

* Assumption for the rest of the lecture: The index is one big file.

* In reality: Use a scheme somewhere in between (e.g., split very large postings
lists, collect postings lists of length 1 in one file etc.)



Logarithmic merge

* Maintain a series of indexes, each twice as large as the previous one.
* Keep smallest (Z,) in memory

* Larger ones (l,, |, ...) on disk

* If Z, gets too big (> n), write to disk as |,

* or merge with |, (if |, already exists) as Z,

* Either write merge Z, to disk as I, (if no |,)

* Or merge with I, to form Z,

* etc.



LMERGEADDTOKEN(indexes, £y, token)
. 1 Zy — MERGE(Z, {token})
l—ogc 2 if |Zy| = n

3 then for | — 0 to

4 do if /; € indexes
5 then Z; 1 «— MERGE(/;, Z})
6 (Zi+1 is a temporary index on disk.)
7 indexes < indexes — {l;}
8 else [ — Z; (£; becomes the permanent index I;.)
9 indexes « indexes U {I;}
10 BREAK
L1 Zo — ()
LOGARITHMICMERGE()

1 Zo<— 0 (2o is the in-memory index.)

2 indexes «— ()

3 while true

4 do LMERGEADDTOKEN(indexes, Zy, GETNEXTTOKEN())



Logarithmic merge

 Auxiliary and main index: index construction time is O(T?) as each
posting is touched in each merge.

* Logarithmic merge: Each posting is merged O(log T) times, so
complexity is O(T log T)

e So logarithmic merge is much more efficient for index construction

e But query processing now requires the merging of O(log T) indexes
 Whereas it is O(1) if you just have a main and auxiliary index



Further issues with multiple indexes

* Corpus-wide statistics are hard to maintain

* E.g., when we spoke of spell-correction: which of several corrected
alternatives do we present to the user?

* We said, pick the one with the most hits

* How do we maintain the top ones with multiple indexes and
invalidation bit vectors?

* One possibility: ignore everything but the main index for such ordering

* Will see more such statistics used in results ranking



Dynamic indexing at search engines

* All the large search engines now do dynamic indexing

* Their indices have frequent incremental changes

* News items, new topical web pages
e Sarah Palin ...

* But (sometimes/typically) they also periodically reconstruct the index
from scratch

e Query processing is then switched to the new index, and the old index is then
deleted
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Other sorts of indexes

* Positional indexes
* Same sort of sorting problem ... just larger @ Why?

* Building character n-gram indexes:
* As text is parsed, enumerate n-grams.
* For each n-gram, need pointers to all dictionary terms containing it — the
“postings”.
* Note that the same “postings entry” will arise repeatedly in parsing the docs —

need efficient hashing to keep track of this.

* E.g., that the trigram uou occurs in the term deciduous will be discovered on each text
occurrence of deciduous

* Only need to process each term once
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