
Lecture 5
Tolerant Retrieval

Dictionary data structures for
inverted indexes

 The dictionary data structure stores the term
vocabulary, document frequency, pointers to
each postings list … in what data structure?

A naïve dictionary

 An array of struct:

char[20] int Postings *
20 bytes 4/8 bytes 4/8 bytes

 How do we store a dictionary in memory efficiently?
 How do we quickly look up elements at query time?

Dictionary data structures

 Two main choices:
 Hash table
 Tree

 Some IR systems use hashes, some trees

Hashes

 Each vocabulary term is hashed to an integer
 (We assume you’ve seen hashtables before)

 Pros:
 Lookup is faster than for a tree: O(1)

 Cons:
 No easy way to find minor variants:

 judgment/judgement
 No prefix search [tolerant retrieval]
 If vocabulary keeps going, need to occasionally do

the expensive operation of rehashing everything

Trees

 Simplest: Binary tree
 More usual: B-trees
 Pros:

 Solves the prefix problem (terms starting with hyp)
 Cons:

 Slower: O(log M) [and this requires balanced tree]
 Rebalancing binary trees is expensive

 But B-trees mitigate the rebalancing problem

Root
a-m n-z

a-hu hy-m n-sh si-z

Tree: binary tree

Tree: B-tree

 Definition: Every internal nodel has a number of
children in the interval [a,b] where a, b are
appropriate natural numbers.

a-hu
hy-m

n-z

Tree: Dictionary

Tree: Dictionary

 Single-word query
 1-word matching
 Frequency of matching

 Content query
 Given word near other words
 Phrase
 Proximity (near by)

Keyword-based query language

 Boolean Query
 AND, OR, NOT
 Query syntax tree
 AND (satisfy both)
 OR (satisfy either one)
 A BUT B (satisfy A but not B)
 Reasonable approach  “Fuzzy” technique

Keyword-based query language

 Feedback technology

User  “query”  “result”

 pick a doc  as a “query”

 ”results” ,…..

Keyword-based query language

Wild-card queries

Wild-card queries: *

 mon*: find all docs containing any word beginning
“mon”.

 Easy with binary tree (or B-tree) lexicon: retrieve
all words in range: mon ≤ w < moo

 *mon: find words ending in “mon”: harder
 Maintain an additional B-tree for terms backwards.
Can retrieve all words in range: nom ≤ w < non.

Exercise: from this, how can we enumerate all terms
meeting the wild-card query pro*cent ?

Query processing

 At this point, we have an enumeration of all terms
in the dictionary that match the wild-card query.

 We still have to look up the postings for each
enumerated term.

 E.g., consider the query:
se*ate AND fil*er
This may result in the execution of many Boolean
AND queries.

B-trees handle *’s at the end of a
query term

 How can we handle *’s in the middle of query
term?
 co*tion

 We could look up co* AND *tion in a B-tree and
intersect the two term sets
 Expensive

 The solution: transform wild-card queries so that
the *’s occur at the end

 This gives rise to the Permuterm Index.

Permuterm index

 For term hello, index under:
 hello$, ello$h, llohe, lohel, o$hell
where $ is a special symbol.

 Queries:
 X lookup on X$ X* lookup on X*$
 *X lookup on X$* *X* lookup on X*
 X*Y lookup on Y$X* X*Y*Z ??? Exercise!

Query = hel*o
X=hel, Y=o

Lookup o$hel*

Permuterm query processing

 Rotate query wild-card to the right
 Now use B-tree lookup as before.
 Permuterm problem: ≈ quadruples lexicon size

Empirical observation for English.

Bigram (k-gram) indexes

 Enumerate all k-grams (sequence of k chars)
occurring in any term

 e.g., from text “April is the cruelest month” we
get the 2-grams (bigrams)

 $ is a special word boundary symbol
 Maintain a second inverted index from bigrams to

dictionary terms that match each bigram.

a,ap,pr,ri,il,l,i,is,s,t,th,he,e,$c,cr,ru,
ue,el,le,es,st,t$, m,mo,on,nt,h

Bigram index example

 The k-gram index finds terms based on a query
consisting of k-grams

mo

on

among

$m mace

among

amortize

madden

money

Processing n-gram wild-cards

 Query mon* can now be run as
 $m AND mo AND on

 Gets terms that match AND version of our
wildcard query.

 But we’d enumerate moon.
 Must post-filter these terms against query.
 Surviving enumerated terms are then looked up

in the term-document inverted index.
 Fast, space efficient (compared to permuterm).

Processing wild-card queries

 As before, we must execute a Boolean query for
each enumerated, filtered term.

 Wild-cards can result in expensive query
execution (very large disjunctions…)
 pyth* AND prog*

 If you encourage “laziness” people will respond!

 Does Google allow wildcard queries?

Search
Type your search terms, use ‘*’ if you need to.
E.g., Alex* will match Alexander.

Spelling correction

Spell correction

 Two principal uses
 Correcting document(s) being indexed
 Correcting user queries to retrieve “right” answers

 Two main flavors:
 Isolated word

 Check each word on its own for misspelling
 Will not catch typos resulting in correctly spelled words
 e.g., from → form

 Context-sensitive
 Look at surrounding words,
 e.g., I flew form Heathrow to Narita.

Document correction

 Especially needed for OCR’ed documents
 Correction algorithms are tuned for this: rn/m
 Can use domain-specific knowledge

 E.g., OCR can confuse O and D more often than it would
confuse O and I (adjacent on the QWERTY keyboard, so
more likely interchanged in typing).

 But also: web pages and even printed material
has typos

 Goal: the dictionary contains fewer misspellings
 But often we don’t change the documents but

aim to fix the query-document mapping

Query mis-spellings

 Our principal focus here
 E.g., the query Alanis Morisett

 We can either
 Retrieve documents indexed by the correct

spelling, OR
 Return several suggested alternative queries with

the correct spelling
 Did you mean … ?

Isolated word correction

 Fundamental premise – there is a lexicon from
which the correct spellings come

 Two basic choices for this
 A standard lexicon such as

 Webster’s English Dictionary
 An “industry-specific” lexicon – hand-maintained

 The lexicon of the indexed corpus
 E.g., all words on the web
 All names, acronyms etc.
 (Including the mis-spellings)

Misspelled Word Correction

When?
If a query word (combination) is quite rare or not

available at all in the dictionary

Approach:
1. Find similar term(s)
2. Calculate their similarity to the query term
3. Choose the most frequent ones

Misspelled Word Correction

 Fundamental premise – there is a lexicon from
which the correct spellings come

 Two basic choices for this
 A standard lexicon such as

 Webster’s English Dictionary
 An “industry-specific” lexicon – hand-maintained

 The lexicon of the indexed corpus
 E.g., all words on the web
 All names, acronyms etc.
 (Including the mis-spellings)

Misspelled Word Correction

 Given a lexicon and a character sequence Q,
return the words in the lexicon closest to Q

 What’s “closest”?
 We’ll study several alternatives

 Edit distance (Levenshtein distance)
 Weighted edit distance
 n-gram overlap

Edit distance

 Given two strings S1 and S2, the minimum
number of operations to convert one to the other

 Operations are typically character-level
 Insert, Delete, Replace, (Transposition)

 E.g., the edit distance from dof to dog is 1
 From cat to act is 2 (Just 1 with transpose.)
 from cat to dog is 3.

 Generally found by dynamic programming.
 See http://www.merriampark.com/ld.htm for a

nice example plus an applet.

http://www.merriampark.com/ld.htm

Weighted edit distance

 As above, but the weight of an operation
depends on the character(s) involved
 Meant to capture OCR or keyboard errors, e.g. m

more likely to be mis-typed as n than as q
 Therefore, replacing m by n is a smaller edit

distance than by q
 This may be formulated as a probability model

 Requires weight matrix as input
 Modify dynamic programming to handle weights

Using edit distances

 Given query, first enumerate all character
sequences within a preset (weighted) edit
distance (e.g., 2)

 Intersect this set with list of “correct” words
 Show terms you found to user as suggestions
 Alternatively,

 We can look up all possible corrections in our
inverted index and return all docs … slow

 We can run with a single most likely correction
 The alternatives disempower the user, but save a

round of interaction with the user

Edit distance to all dictionary terms?

 Given a (mis-spelled) query – do we compute its
edit distance to every dictionary term?
 Expensive and slow
 Alternative?

 How do we cut the set of candidate dictionary
terms?

 One possibility is to use n-gram overlap for this
 This can also be used by itself for spelling

correction.

n-gram overlap

 Enumerate all the n-grams in the query string as
well as in the lexicon

 Use the n-gram index (recall wild-card search) to
retrieve all lexicon terms matching any of the
query n-grams

 Threshold by number of matching n-grams
 Variants – weight by keyboard layout, etc.

Example with trigrams

 Suppose the text is november
 Trigrams are nov, ove, vem, emb, mbe, ber.

 The query is december
 Trigrams are dec, ece, cem, emb, mbe, ber.

 So 3 trigrams overlap (of 6 in each term)
 How can we turn this into a normalized measure

of overlap?

One option – Jaccard coefficient

 A commonly-used measure of overlap
 Let X and Y be two sets; then the J.C. is

 Equals 1 when X and Y have the same elements
and zero when they are disjoint

 X and Y don’t have to be of the same size
 Always assigns a number between 0 and 1

 Now threshold to decide if you have a match
 E.g., if J.C. > 0.8, declare a match

YXYX ∪∩ /

Matching trigrams

 Consider the query lord – we wish to identify
words matching 2 of its 3 bigrams (lo, or, rd)

lo

or

rd

alone lord sloth

lord morbid

border card

border

ardent

Standard postings “merge” will enumerate …

Adapt this to using Jaccard (or another) measure.

Context-sensitive spell correction

 Text: I flew from Heathrow to Narita.
 Consider the phrase query “flew form Heathrow”
 We’d like to respond

Did you mean “flew from Heathrow”?
because no docs matched the query phrase.

Context-sensitive correction

 Need surrounding context to catch this.
 First idea: retrieve dictionary terms close (in

weighted edit distance) to each query term
 Now try all possible resulting phrases with one

word “fixed” at a time
 flew from heathrow
 fled form heathrow
 flea form heathrow

 Hit-based spelling correction: Suggest the
alternative that has lots of hits.

Exercise

 Suppose that for “flew form Heathrow” we
have 7 alternatives for flew, 19 for form and 3 for
heathrow.

How many “corrected” phrases will we enumerate
in this scheme?

Another approach

 Break phrase query into a conjunction of biwords
(Lecture 2).

 Look for biwords that need only one term
corrected.

 Enumerate phrase matches and … rank them!

General issues in spell correction

 We enumerate multiple alternatives for “Did you
mean?”

 Need to figure out which to present to the user
 Use heuristics

 The alternative hitting most docs
 Query log analysis + tweaking

 For especially popular, topical queries

 Spell-correction is computationally expensive
 Avoid running routinely on every query?
 Run only on queries that matched few docs

Soundex

Soundex

 Class of heuristics to expand a query into
phonetic equivalents
 Language specific – mainly for names
 E.g., chebyshev → tchebycheff

 Invented for the U.S. census … in 1918

Soundex – typical algorithm

 Turn every token to be indexed into a 4-character
reduced form

 Do the same with query terms
 Build and search an index on the reduced forms

 (when the query calls for a soundex match)

Soundex – typical algorithm

1. Retain the first letter of the word.
2. Change all occurrences of the following letters

to '0' (zero):
'A', E', 'I', 'O', 'U', 'H', 'W', 'Y'.

3. Change letters to digits as follows:
 B, F, P, V → 1
 C, G, J, K, Q, S, X, Z → 2
 D,T → 3
 L → 4
 M, N → 5
 R → 6

Soundex continued

4. Remove all pairs of consecutive digits.
5. Remove all zeros from the resulting string.
6. Pad the resulting string with trailing zeros and

return the first four positions, which will be of the
form <uppercase letter> <digit> <digit> <digit>.

E.g., Herman becomes H655.

Will hermann generate the same code?

Soundex

 Soundex is the classic algorithm, provided by
most databases (Oracle, Microsoft, …)

 How useful is soundex?
 Not very – for information retrieval
 Okay for “high recall” tasks (e.g., Interpol),

though biased to names of certain nationalities
 Zobel and Dart (1996) show that other algorithms

for phonetic matching perform much better in the
context of IR

What queries can we process?

 We have
 Positional inverted index with skip pointers
 Wild-card index
 Spell-correction
 Soundex

 Queries such as
(SPELL(moriset) /3 toron*to) OR

SOUNDEX(chaikofski)

About Query Logs

 Google Trend
 logs of query issued by query engine

Google Trends

Why each country has each
surveillance system?

 Influenza epidemics are a major public health
concern, because it causes tens of millions of
illnesses each year.

 To reduce the victims, the early detection of
influenza epidemics is a national mission in every
country.

 BUT: These surveillance systems
basically rely on hospital reports
(written manually).

Centers for Disease Control and
Prevention (CDC)

CDC Taiwan

Recent Approach

 using Phone Call data
 Espino et al. (2003) used data of a telephone

triage service, a public service, to give an advice
to users via telephone. They reported the number
of telephone calls that correlates with influenza
epidemics.

 using Drug sale data
 Magruder (2003) used the amount drug sales.

Among various approaches…

The State-of-the-Art Web based Approach

 Ginsberg et al. (Nature 2009) used Google web
search queries that correlate with an influenza
epidemic, such as “flu”, “fever”.

CDC vs Google Flu Trends?

 Source: http://www.google.org/flutrends/

Google Flu Trends

Google Flu Trends

Google Flu Trends

Google Flu Trends

Google Flu Trends

http://www.google.org/flutrends/

http://www.google.org/flutrends/

What is Google Correlate?

 With Google Trends, you type in a query and get
back a series of its frequency.

 Google Correlate is like Google Trends in reverse.
 With Google Correlate, you enter a data series (the

target) and get back queries whose frequency
follows a similar pattern.

Google
Trends “mittens”

Google
Correlate

“mittens”

用 Google Trends 找出趨勢
再透過Google Correlate 找出與此趨勢相關的事物

Google Correlate

	投影片編號 1
	投影片編號 2
	投影片編號 3
	Dictionary data structures for inverted indexes
	A naïve dictionary
	Dictionary data structures
	Hashes
	Trees
	Tree: binary tree
	Tree: B-tree
	Tree: Dictionary
	Tree: Dictionary
	Keyword-based query language
	Keyword-based query language
	Keyword-based query language
	Wild-card queries
	Wild-card queries: *
	Query processing
	B-trees handle *’s at the end of a query term
	Permuterm index
	Permuterm query processing
	Bigram (k-gram) indexes
	Bigram index example
	Processing n-gram wild-cards
	Processing wild-card queries
	Spelling correction
	Spell correction
	Document correction
	Query mis-spellings
	Isolated word correction
	投影片編號 31
	Misspelled Word Correction
	Misspelled Word Correction
	Misspelled Word Correction
	Edit distance
	Weighted edit distance
	Using edit distances
	Edit distance to all dictionary terms?
	n-gram overlap
	Example with trigrams
	One option – Jaccard coefficient
	Matching trigrams
	Context-sensitive spell correction
	Context-sensitive correction
	Exercise
	Another approach
	General issues in spell correction
	Soundex
	Soundex
	Soundex – typical algorithm
	Soundex – typical algorithm
	Soundex continued
	Soundex
	What queries can we process?
	About Query Logs
	Google Trends
	Why each country has each surveillance system?
	Centers for Disease Control and Prevention (CDC)
	CDC Taiwan
	Recent Approach
	The State-of-the-Art Web based Approach
	CDC vs Google Flu Trends?
	Google Flu Trends
	Google Flu Trends
	Google Flu Trends
	Google Flu Trends
	Google Flu Trends
	What is Google Correlate?
	Google Correlate

