Vector Representation of Text

Word Embedding Technique
(word2vec)



Word to vector (word2vector)

* The more often two words co-occur, the closer
their vectors will be

* Two words have close meanings if their local
neighborhoods are similar
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Bag of Words
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uy 1 1

Doc 1 1



Bag of Words

SN
S

:

I | love dogs | hate and | knitting is my hobby | passion
Doc 1 1 1 1
Doc2 | 1 1 1 1 1
Doc 3 1 1 1 2 1 1




love dogs hate and | knitting is my hobby |passion
Doc 1 1 1
Doc 2 1 1 5 1
Doc 3 1 1 1 2 1 1
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tf, , =frequency of xiny

df =number of documents containing x
Term x within documenty N = total number of documents

w, ,=tf,  xlog



Word embedding



keras.layers.Embedding
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Word2Vec
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The quick brownfox ?  over the lazy dog
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The quick brown fox over the lazy dog
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The quick brown fox over the lazy dog

grammatical, semantical similarity



Word Embedding Choices

1. Learnable embedding
2. Word2Vec

3. GloVe

4. Fastlext



Word2Vec

* Check genism

*Get the training data on the same
page (text8)

* https://radimrehurek.com/gensim/models/word2vec.

html


https://radimrehurek.com/gensim/models/word2vec.html

Textd&

Large text compression benchmark

* First 10° bytes of the English Wikipedia dump on Mar. 3, 2006.
* Remove tags, digits, punctations

* Lower cases

* Leaving a-z, unrepeated spaces

* Truncate first 10° bytes

* About 1700 articles

* http://mattmahoney.net/dc/textdata.html



http://mattmahoney.net/dc/textdata.html

100,000,000 Original size

96,829,911 Discard all outside <text...> ... </text>

96,604,864 Discard #REDIRECT text

96,210,439 Discard XML tags (<text...> and </text>)

95,287,203 URL-decode &lt; &gt; and &amp; to < > and &

95,087,290 Remove <ref> ... </ref> (citations)

93,645,338 Remove other XHTML tags

91,399,021 Replace [http:... anchor text] with [anchor text]

90,868,662 Replace [[Image:...|thumb|left/right|NNNpx|caption]] with caption
90,770,617 Replace [[category:text|title]] with [[text]]

88,385,654 Remove [[language:link]] (links to same page in other languages)
85,443,983 Replace [[Wiki link|anchor text]] with [[anchor text]]

83,420,173 Remove {{...}} (icons and special symbols)

80,943,967 Remove { ... } (tables)

77,732,609 Remove [ and ]

75,053,443 Replace &...; with space (URL-encoded chars)

70,007,945 Convert to lower case, replace all sequences not in a-z,0-9 with a single space
74,090,640 Spell digits, leaving a-z and unrepeated spaces



Training complexity
Training epochs

Word count in corpus
<Model related factor>

O=EXT X

QS 3 Im O



CBOW N Window size for input

D Dimension of P layer
V  Size of vocabulary

Continuous bag-of-words

O=NXD+D Xlog,(V)




f C Maximum word distance
Ski P-gram D Dimension of P layer
V  Size of vocabulary

Continuous skip-gram

O=CX(D+Dxlog,V))




Word count

* Try Wikipedia Statistics page https://en.wikipedia.org/wiki/Wikipedia:Size_in_volumes



https://en.wikipedia.org/wiki/Wikipedia:Size_in_volumes

Vocabulary size

* Try Heaps' law
* https://en.wikipedia.org/wiki/Heaps%27 law



https://en.wikipedia.org/wiki/Heaps'_law

Problem?

Distributed representations

Word vectors aren’'t guaranteed to encode any
linguistic relationships between words, but many
models produce vectors that do
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Example

Any technique mapping a word (or phrase) from it's
original high-dimensional input space (the body of
all words) to a lower-dimensional numerical vector
space - so one embeds the word in a different space

.. body part
; , ¥ .food : -
city : At Points: original word space
T o Sontravel s $wk .
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Source: http://sebastianruder.com/content/images/2016/04/word_embeddings_colah.png



Traditional Method - Bag of Words Model Word Embeddings

Word Representations

Uses one hot encoding

Each word in the vocabulary is
represented by one bit position in a
HUGE vector.

For example, if we have a vocabulary
of 10000 words, and “Hello” is the 4t
word in the dictionary, it would be
represented by: 000100
000

Context information is not utilized

Stores each word in as a point in
space, where it is represented by a
vector of fixed number of dimensions
(generally 300)

Unsupervised, built just by reading
huge corpus

For example, “Hello” might be
represented as :
[0.4,-0.11, 0.55, 0.3 ...0.1, 0.02]

Dimensions are basically projections
along different axes, more of a
mathematical concept.



Architecture
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To compare pieces of text

* We need effective representation of
* Words
* Sentences
* Text

» Approach 1: Use existing thesauri or ontologies like WordNet and Snomed CT (for
medical).

Drawbacks:

* Manual
* Not context specific

* Approach 2: Use co-occurrences for word similarity. Drawbacks:
e Quadratic space needed
* Relative position and order of words not considered



nxk

Approach 3: low dimensional
vectors

Store only “important” information in fixed, low dimensional vector.
Singular Value Decomposition (SVD) on co-occurrence matrix
= X is the best rank k approximation to X , in terms of least squares
= Motel =[0.286, 0.792,-0.177,-0.107, 0.109, -0.542, 0.349, 0.271]
m = n = size of vocabulary

S is the same matrix as S except that it contains only the top largest
singular values

X =UDVT

nxlk| [ kxk lc x k

Diagonal Orthogonal
matrix matrix

Orthogonal
matrix
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Example of Approach 3: low dimensional
vectors

* AnImproved Model of Semantic Similarity Based on Lexical Co-Occurrence [Rohde et al. 2005]
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Problems with SVD

* Computational cost scales quadratically for n x m matrix: O(mn?) flops
(when n<m)

* Hard to incorporate new words or documents
* Does not consider order of words

42



word2vec approach to represent the meaning of word

* Represent each word with a low-dimensional vector
* Word similarity = vector similarity
* Key idea: Predict surrounding words of every word

* Faster and can easily incorporate a new sentence/document or add a
word to the vocabulary

43



Represent the meaning of word — word2vec

e 2 basic neural network models:

e Continuous Bag of Word (CBOW): use a window of word
to predict the middle word

e Skip-gram (SG): use a word to predict the surrounding
ones in window.
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Word2vec — Continuous Bag of Word

e E.g. “The cat sat on floor”
* Window size =2

45



Index of cat in vocabulary

one-hot
vector

Input layer

cat

on

E

Hidden layer

Output layer

[ [-[=]=]°[=]=]=]-]

sat

one-hot
vector
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We must learn W and W'

Input layer
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V-dim N will be the size of word vector
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Input layer
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Input layer

We would prefer j close to j.,;

cat Hidden layer Output layer
WVXN

0.01
0.02

V-dim ) R 0.00
Wyuny XV =12

y = softmax(z)

0.02
0.01
0.02
0.01
WVXN N-dim . 0.7

Vsat

V-dim 0.00

on

V-dim N will be the size of word vector
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T
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We can consider either W or W’ as the word’s
representation. Or even take the average.



Some interesting results

Word Analogies

Test for linear relationships, examined by Mikolov et al. (2014)
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Word analogies
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Represent the meaning of sentence/text

* Simple approach: take avg of the word2vecs of its words
* Another approach: Paragraph vector (2014, Quoc Le, Mikolov)

e Extend word2vec to text level
* Also two models: add paragraph vector as the input

Classifier [ the] [cat] [sat| | |
Classifier [on | \\ /'
oM
Average/Concatenate o
OIim  omom Paragraph Matix --------->

Oomm Oomoom
Paragraph Matrix-----» E)::l
Par the c sat

agraph at id

55



Applications

 Word Similarity: Edit Distance, WordNet, Porter's Stemmer,
Lemmatization using dictionaries

e Search, e.g., query expansion

* Machine Translation

* Part-of-Speech and Named Entity Recognition
* Relation extraction

* Sentiment analysis

* Semantic Analysis of Documents

* Clustering

56
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