Biomedical Information Retrieval

Lecture 2: Term vocabulary and posting
lists

Major subjects for this lecture

s Preprocessing to form the
“term vocabulary”

= Documents
= [okenization
» What ferms do we put in the index?

| d—

—1
nformation
need /
Pre-process

e

* Term/Index ?
(Tparse) —[[aweny) [[imeex] |

Content Analysis

= Automated Transformation of raw text into a
form that represent some aspect(s) of its
meaning

= Including, but not limited to:

» Automated Thesaurus Generation
= Phrase Detection

» Categorization

= Clustering

= Summarization

Techniques for Content Analysis

|
= Statistical

« Single Document

» Full Collection
= Linguistic

= Syntactic

= Semantic
» Pragmatic

= Knowledge-Based (Artificial Intelligence)
= Hybrid (Combinations)

Text Processing

s Standard Steps:
» Recognize document structure
= titles, sections, paragraphs, etc.

» Break into tokens
= usually space and punctuation delineated
= special issues with Asian languages

= Stemming/morphological analysis
» Store in inverted index (to be discussed later)

Document Processing Steps

Stemming and Morphological Analysis
- —
s Goal: “normalize” similar words

= Morphology (“form” of words)
» Inflectional Morphology

= E.g,. inflect verb endings and noun number
= Never change grammatical class

» dog, dogs

n tenqo, tienes, tiene, tenemos, tienen

« Derivational Morphology
« Derive one word from another,

= Often change grammatical class
n build, building, health, healthy

Recall basic indexing pipeline

Documents to A=

I
L — 1

be indexed. L

Friends, Romans, countrymen.

L Tokenizer]

Token stream. J_|7 Friends || Romans | | Countrymen
Linguistic modules)
Modified tokens. IL friend | |roman| |countryman
e frong| w214}
Inverted index. @ romarn — |12
countrymari"t———>|13 16

Parsing a document

= What formatis it in?
= pdf/word/excel/html?

= What language is it in?
s What character set is in use?

Each of these is a classification problem, which
we will study later in the course.

But these tasks are often done heuristically -

Initial stages of text processing

Tokenization

- Cut character sequence into word tokens
. Deal with “John’s”, a state-of-the-art solution

Normalization

- Map text and query term to same form
. You want U.S.A. and USA to match

Stemming

- We may wish different forms of a root to match
. authorize, authorization

Stop words

- We may omit very common words (or not)
. the, a, to, of

Complications: Format/language

s Documents being indexed can include docs
from many different languages

» Asingle index may have to contain terms of
several languages.

= Sometimes a document or its components can
contain multiple languages/formats

» French email with a German pdf attachment.

= What is a unit document?
» Afile?
= An email? (Perhaps one of many in an mbox.)
= An email with 5 attachments?
= A group of files (PPT or LaTeX as HTML pages)

Tokens and Terms

H o\

5 AR

VoZa
1~

Bag of Words

| love doQgS —p D —
N Doc1 1 1 1

Bag of Words

SN
S

:

| love | dogs hate and | knitting| is | my hobby | passion
Doc 1 1 1 1
Doc2 | 1 1 1 1 1
Doc 3 1 1 1 2 1 1

love dogs hate and | knitting is my hobby |passion
Doc 1 1 1
Doc 2 1 1 5 1
Doc 3 1 1 1 2 1 1

R 58 R
HRERF
8% E'

&

IR

I

(&N |

Ol

«@ 1/10000
@ /1000
«@ 998.9/1000

(&N |

IREER

HLEE R

N
d fx)

tijy = frequency of x iny

df =number of documents containing x
Term x within documenty N = total number of documents

w, ,=tf, xlog |

WORD EMBEDDING

keras.layers.Embedding

passion
x: 0.119

y: 0.212
z: 0.010

* panda

* Catl

* dog * goat

°* DI
* hamster PIS

Word2Vec

A

* panda

> cat
» goat
* dog . p%
* hamster_

Word2Vec

A

Woma

o
Man

The quick brown fox ? over the lazy dog

The quick brown fox over the lazy dog

quick \

brown

f E

over — ‘

the/'; ‘

deden

ﬁ

— 0.0010 =
0.0000
0.0034

0.2421

0.0000
0.0000

- 0.0000 -

deden

quick
brown \
®

fox \
— jumps
over — ‘ E

the / CBOW
: - Continuous bag-of-

lazy R words

Hidden

: quick

Skip-gram

Continuous skip-gram

Dum@nsbzrbctagzrt@bnatuon

— 0.0010
0.0000
0.0034

0.2421

0.0000
0.0000
- 0.0000 -

The quick brown fox over the lazy dog

grammatical, semantical similarity

Word Embedding Choices

1. Learnable embedding
2. Word2Vec

3. GloVe
4. Fastlext

Tokenization
|
s Input: “Friends, Romans and Countrymen'’
s Output: Tokens
« Friends
» Romans
« Countrymen

s Fach such token is now a candidate for an index
entry, after further processing

s Described below
s But what are valid tokens to emit?

Tokenization

= Issues in tokenization:
» Finland'’s capital -

Finland? Finlands? Finland’s?

s Hewlett-Packard — Hewlett

and Packard as two tokens?

= State-of-the-art. break up hyphenated sequence.
= CO-education

= lowercase, lower-case, lower case”?
= It's effective to get the user to put in possible hyphens

s San Francisco: one token or two? How do
you decide it is one token?

Numbers
-
s 3/12/97 Mar. 12, 19917
s 55B.C
s B-52
s My PGP key is 324a3df234cb23e
x» (800) 234-2333
« Often have embedded spaces

s Often, don't index as text

= But often very useful: think about things like looking up
error codes/stacktraces on the web

= (One answer is using n-grams: Lecture 3)

« Will often index “meta-data” separately
= Creation date, format, etc.

Tokenization: language Issues

s French

s ['ensemble — one token or two?
« L7177 e?
« Want ["ensemble to match with un ensemble

= German noun compounds are not segmented
» Lebensversicherungsgesellschaftsangestellter
» ‘life insurance company employee’

» German retrieval systems benefit greatly from a
compound splitter module

Tokenization: language Issues

s Chinese and Japanese have no spaces between
words:

o SHRLREN A BEEEZEREISNHGS BX,
» Not always guaranteed a unique tokenization

s Further complicated in Japanese, with multiple
alphabets intermingled

« Dates/amounts in multiple formats

T4 —F 250042 1HT 2 avi—&#ﬁﬁkztﬁomﬁﬁ)
* X

v J
Katakana Hiragana Kanji Romaji

End-user can express query entirely in hiraganal!

Tokenization: language Issues

= Arabic (or Hebrew) is basically written right to left, but with
certain items like numbers written left to right

= Words are separated, but letter forms within a word form
complex ligatures
o0 -d Jdagld g lf«\g 132 .= 1962 3000 K81 edae
- ~— start

= ‘Algeria achieved its independence in 1962 after 132 years of
French occupation.’

= With Unicode, the surface presentation is complex, but the
stored form is straightforward

Stop words

= With a stop list, you exclude from dictionary entirely the commonest
words. Intuition:
= [hey have little semantic content: the, a, and, to, be

» There are a lot of them: ~30% of postings for top 30 words

= But the trend is away from doing this:

= Good compression techniques (lecture 5) means the space for
including stopwords in a system is very small

» Good query optimization techniques mean you pay little at query
time for including stop words.
= You need them for:
= Phrase queries: “King of Denmark”
= Various song titles, etc.: “Let it be”, “To be or not to be”

= “Relational” queries: “flights to London”

Normalization

Need to “normalize” terms in indexed text as
well as query terms into the same form

s We want to match U.S5.A. and USA

We most commonly implicitly define
equivalence classes of terms

» €.9., by deleting periods in a term

Alternative is to do asymmetric expansion:

« Enter: window Search: window, windows

« Enter: windows Search: Windows, windows, window
« Enter: Windows Search: Windows

Potentially more powerful, but less efficient

Normalization: other languages

s Accents: résumeévs. resume.

= Most important criterion:

» How are your users like to write their queries for
these words?

s Even in languages that standardly have accents,
users often may not type them

» German: Tuebingenvs. Tibingen
= Should be equivalent

Normalization: other languages

s Need to “normalize” indexed text as well as
query terms into the same form

7H30H vs. 7/30

s Character-level alphabet detection and
conversion
» Tokenization not separable from this.

= Sometimes ambiguous:
Morgen will ich in MIT -{-

Case folding

s Reduce all letters to lower case

» exception: upper case in mid-sentence?

= e.9., General Motors
= Fedvs. fed
= SA/L vs. sail

» Often best to lower case everything, since users
will use lowercase regardless of ‘correct’
capitalization---

= Aug 2005 Google example:
» C.A.T. > Cat Fanciers website not Caterpiller Inc.

Thesauri and soundex

= Handle synonyms and homonyms

» Hand-constructed equivalence classes
= €.9., car= automobile
= color= colour

s Rewrite to form equivalence classes

= Index such equivalences

= When the document contains automobile, index
it under caras well (usually, also vice-versa)

s Or expand query?

» When the query contains automobile, look under
caras well

Soundex

= Traditional class of heuristics to expand a query
into phonetic equivalents

» Language specific — mainly for names
» Invented for the US Census
» E.g., chebyshev — tchebycheff

s More on this in the next lecture

L emmatization

= Reduce inflectional/variant forms to base form

[E.g.,
s am, are, is— be

m Ccar, cars, car’s, cars'— car

m the boy's cars are different colors — the boy car
be different color

s Lemmatization implies doing “proper”
reduction to dictionary headword form

Stemming

= Reduce terms to their “roots” before indexing
s “Stemming” suggest crude affix chopping
» language dependent

= €.9., automate(s), automatic, automation all
reduced to automat.

for example compressed for exampl compress and
and compression are both > compress ar both accept
accepted as equivalent to as equival to compress

compress.

Porter’s algorithm

s Commonest algorithm for stemming English

» Results suggest it's at least as good as other
stemming options

= Conventions + 5 phases of reductions
» phases applied sequentially
» each phase consists of a set of commands

» sample convention: Of the rules in a compound
command, select the one that applies to the
longest suffix.

Typical rules in Porter

m S565—> SS

B /ES— [

m dtional - ate
s fional— tion

= Weight of word sensitive rules

= replacement — replac
= cement — cement

Other stemmers

s Other stemmers exist, e.q., Lovins stemmer

http://www.comp.lancs.ac.uk/computing/research/stemming/general/lovins.htm

= Single-pass, longest suffix removal (about 250
rules)

= Full morphological analysis — at most modest
benetfits for retrieval

s Do stemming and other normalizations help?

« English: very mixed results. Helps recall for some
queries but harms precision on others
= E.g., operative (dentistry) = oper

= Definitely useful for Spanish, German, Finnish, ...

Language—specificity

= Many of the above features embody
transformations that are

» Language-specific and
» Often, application-specific

s These are “plug-in” addenda to the indexing
process

s Both open source and commercial plug-ins are
available for handling these

Dictionary entries — first cut

ensemble.french

F¥/E.chinese

MIT.english These may be
grouped by

mit.german language (or

J enalish not---).

guaranteed.englis More on this in

entries.english ranking/ query
processing.

sometimes.english

tokenization.english

Word Frequency vs. Resolving
POWGF (from van Rijsbergen 79)

The most frequent words are notthe most descriptive.

Upper cut-off Lower cut-off

/ —

Resolving power of
< Significant words

>Si&gnificint words
\

Frequency of words

Words by rank order

Plotting Word Frequency by Rank

= Say for a text with 100 tokens

s Count
= How many tokens occur 1 time (50)
= How many tokens occur 2 times (20
= How many tokens occur 7 times (10
= How many tokens occur 12 times (1
= How many tokens occur 14 times (1

= 50 things that occur the most times have the highest
rank (rank 1).

= Things that occur the fewest times have the lowest
rank (rank n).

N N N N’

The Corresponding Zipf Curve

I | Frcquency 7

Rank Freq
1 37
2 32
3 24
4 20
5 18
6 15
7 15
8 15
9 13
10 13
11 11
12 11
13 10
14 10
15 10
16 10
17 10
18 10
19 9
20 9

system
knowledg
base
problem
abstract
model
languag
implem
reason
inform
expert
analysi
rule
program
oper
evalu
comput
case
gener
form

35

a0

2

20

15

10

&0

100

150

|. Rank ¥ |

Faster postings merges:
Skip pointers/Skip Llists

Recall basic merge

s Walk through the two postings simultaneously,

in time linear in the total number of postings

entries

~ 48

[
.

64

11238

Brutus

24184
2 -
S 1238

1]

>

17 1

21

1371

Caesar

If the list lengths are mand n, the merge takes O(m+n)

operations.

Can we do better?

Yes (if index isn't changing too fast).

Augment postings with skip

pointers (at indexing time)

A 12—
2141841 748 — 6411128

o - o
12380111 =17 =21 731

s [0 skip postings that will not figure in the
search results.

x How?
= Where do we place skip pointers?

Query processing with skip
pointers

D b
248 rm4dl m48 64128

P e ¢ e
123811117 2121 31

Suppose we've stepped through the lists until we process
8 on each list. We match it and advance.

We then have 41 and 11 on the lower. 11 is smaller.

But the skip successor of 11 on the lower list is 31, so
we can skip ahead past the intervening postings.

Where do we place skips?

s [radeoff:

= More skips — shorter skip spans = more likely to
skip. But lots of comparisons to skip pointers.

» Fewer skips — few pointer comparison, but then
long skip spans = few successful skips.

» » » » » » » » » »
L L L L L L L L L L

Placing skips

Simple heuristic: for postings of length £, use V/
evenly-spaced skip pointers.

This ignores the distribution of query terms.

Easy if the index is relatively static; harder if £ keeps
changing because of updates.

This definitely used to help; with modern hardware
it may not (Bahle et al. 2002)

= The 1/0 cost of loading a bigger postings list can
outweigh the gains from quicker in memory
merging!

Phrase queries and positional
Indexes

Phrase queries

= Want to be able to answer queries such as
“stanford university” — as a phrase

= Thus the sentence “/ went to university at
Stanford” is not a match.

» The concept of phrase queries has proven easily

understood by users; one of the few “advanced
search” ideas that works

« Many more queries are /implicit phrase queries
s For this, it no longer suffices to store only
<term: docs> entries

A tirst attempt: Biword indexes

= Index every consecutive pair of terms in the text
as a phrase

s For example the text “Friends, Romans,
Countrymen” would generate the biwords

» friends romans
= romans countrymen
= Each of these biwords is now a dictionary term

= Two-word phrase query-processing is now
Immediate.

Longer phrase queries

s Longer phrases are processed as we did with
wild-cards:

n stanford university palo alto can be broken
into the Boolean query on biwords:

stanford university AND university palo AND
palo alto

Without the docs, we cannot verity that the docs
matching the above Boolean query do contain

the phrase. ——
Can have false positives!

Extended biwords

= Parse the indexed text and perform part-of-speech-
tagging (POST).

= Bucket the terms into (say) Nouns (N) and
articles/prepositions (X).

= Now deem any string of terms of the form NX*N to be an
extended biword.

s Fach such extended biword is now made a term in the

dictionary.
s Example: catcher in the rye
N X X N

= Query processing: parse it into N’s and X's
= Segment query into enhanced biwords
« Look up index

Issues for biword indexes

s False positives, as noted betore
= Index blowup due to bigger dictionary

s For extended biword index, parsing longer
queries into conjunctions:

» E.q., the query tangerine trees and marmalade
skies is parsed into

» tangerine trees AND trees and marmalade
AND marmalade skies

= Not standard solution (for all biwords)

Solution 2: Positional indexes

= In the postings, store, for each term, entries of
the form:

<term, number of docs containing term;
doc7: position1, position2 -+ ;

docZ2: position1, position2 -+ ;

etc.>

Positional index example

<be: 993427,

1:7, 18, 33,72, 86, 231;

Which of docs 1.2,4.5
2: 3, 149; <:: could contain “fo be
4: 17,191, 291, 430, 434;

or not to be’?!
5:363,367,...>

s We use a merge algorithm recursively at the
document level

= But we now need to deal with more than just
equality

Processing a phrase query

s Extract inverted index entries for each distinct
term: to, be, or, not.

s Merge their doc:position lists to enumerate all
positions with “to be or not to be" .

n [O:
n 2:21,17,74,222,557; 4:8,16,190,429,433;
/213,23,191; ...
s De:
s 7:17,19; 4:17,1791,291,430,434;
514,179,701, ...

= Same general method for proximity searches

Proximity queries
-
n LIMIT!/3 STATUTE /3 FEDERAL /2 TORT
Here, /k means “within £ words of™.

= Clearly, positional indexes can be used for
such queries; biword indexes cannot.

= Exercise: Adapt the linear merge of postings
to handle proximity queries. Can you make it
work for any value of k?
= This is a little tricky to do correctly and efficiently
= See Figure 2.12 of lIR
= There’s likely to be a problem on it!

Positional index size

= You can compress position values/offsets: we'll
talk about that in lecture 5

s Nevertheless, a positional index expands
postings storage substantially

s Nevertheless, a positional index is now
standardly used because of the power and
usefulness of phrase and proximity queries -
whether used explicitly or implicitly in a ranking
retrieval system.

Positional index size

= Need an entry for each occurrence, not just

once per document

= Index size depends on average document size{Why?

= Average web page has <1000 terms

» SEC filings, books, even some epic poems -
easily 100,000 terms

s Consider a term with frequency 0.1%

Document size

Postings

Positional postings

1000

1

100,000

100

Rules of thumb

= A positional index is 2—4 as large as a non-
positional index

s Positional index size 35-50% of volume of
original text

s Caveat: all of this holds for “English-like”
languages

Combination schemes

= These two approaches can be profitably combined

» For particular phrases (“Michael Jackson”,
“Britney Spears”) it is inefficient to keep on
merging positional postings lists

= Even more so for phrases like “The Who”

= Williams et al. (2004) evaluate a more sophisticated
mixed indexing scheme

» A typical web query mixture was executed in %
of the time of using just a positional index

» It required 26% more space than having a
positional index alone

Research Topics of IR

TEXT IR

Retrleval Models &
Evaluatlan

l

Impravements on
Retrieval

l

HUMAN-COMFPUTER
INTERACTION FOR IR

Interfaces & _1 1

APPLICATIONS OF IR

Yisualratlun

MULTIMEDIA IR

N

‘ Efficlent
Pracessing

Multimedla Maodellng &
Searching

=Y

[Biblingraphic
ol
Systems

L Dipital Lib raries]

Overview of Text Processing in Biology

~ali.- IR
CQuery by MeSH
Pubimed ard zearch

st :Iuﬂ!ring
ferm co-occurence

asgesement of

.'-' _-———-__* data ﬂhl!l'p'!'!
term recognition causal relation
identification of genes
= -.- = == B lation between
i JEEE] Ty, 5] . = e X
Prokis -EECAL .‘.—-—-—'—" = = et bhlngmul :nnmp'r:

Proks :JLADS] I 1 - -
Hesiwn : Fnd II'I‘FI:II"I'MTHI'E ‘w—
Fx per e :-:--'llllll-.Jn-cil'l.1l'-.l extraction
Coshi=s : o rive bashey amn
VAT sk proem|!
:p.-\:i..: thanzm
' gkrenos :(EEE] |

i

Intelligent Information Retrieval

Intelligent Information Retrieval (/IR)

Information
Retrieval

S

Machine Adaptive
Learning System

Some Issues In |IR
I |

s Document Clustering

s Automatic Text Categorization
s Feature Selection

s Topic Detection and Tracking
= New Information Detection

Document Clustering

s Technique for analyzing structures and relations
in data

= No classes to be identified prior to process
= Intensive literature on

= medical data

= census and survey data

» literature citations

» document retrieval

Document Clustering

= Web browsing (“Scatter/Gather”)

= Taxonomy creation (Yahoo!)

= Term thesaurus development (WordNet)
= Query-log analysis on the web

s User grouping for email routing

= Summarization

Text Clustering

s Finds overall similarities among groups of
documents

s Finds overall similarities among groups of
tokens

s Picks out some themes, ignores others

.| Cluster 1 Size:8 key army war francis spangle banner air song scott word poem british |

O Star—Spangled Banner, The A
(O Key, Francis Scott J
O Fort McHenry

I O Arnold, Henry Harley /
. ARleenls A wiloss
I Cluster 2 Size: 68 film play career win television role record awardyorkpop.ﬂarsﬂgep‘
O Burstyn, Ellen A
(O Stanwyck, Barbara
O Berle, Milton
O Zukor, Adolph y
™ MNMasalslanad Talkh:lal
_I Cluster 3 Size: 97 hrightmagrﬁmdechutermnstdlaﬁmﬁnetypemntainpﬂiodrpecd
O star AY
O Galaxy, The
O extragalactic systems
O interstellar matter y
e TN PP A
I Cluster 4 Size: 67 astronomer observatory astronomy position measure celestial l:elacod
O astronomy and astrophysics g
(O astrometry
O Agena
O astronomical catalogs and atlases /
. Tlamealanal Cin VIR A
I Cluster 5 Size: 10 family specie flower animal armplantshapeleafbritﬂembefmthor|
O blazing star A
O brittle star _J
O bishop’s—cap
() feather star 4

Clustering as Document Ranking

= Cluster entire collection
= Find cluster centroid that best matches the
query
= This has been explored extensively
s 1T IS expensive
s it doesn’t work well

Two Queries: Two Clusterings
- ——

AUTO, CAR, ELECTRIC AUTO, CAR, SAFETY

8 control drive accident --- 6 control inventory integrate -

16 export international unit japan

11 japan export defect unite -

The main differences are the clusters that are central to the query

Clustering Multi-Dimensional

Document Space
(image from Wise et al 95)

Kohonen Feature Maps on Text
(from Chen et al., JASIS 49(7))

BBBBBBBBBB

+0HA (9863

+GROW ACTOR <278

Co-citation analysis (From Garfield 98)

MATERIALS [T

““'m_fnfrf;fnfnwsls GLOBAL MAP
. 1996

VAR
“‘1\'3 ENVIRONMENTAL SCIENCE
|

CHEMIETRY

\ MEUROSCIEN n:;'g..k:t:}xﬁ

NN N

\ i ||I_- — e “Ey
'.*f' S COMPUTER

FSYCHOLOGY ECOMOMICS ERIEMEE

Co-citation analysis (from Garfield 98)

IMMUNOLOGY

i,

DENDRNTIC
cELL?'E_ fo

i

\
EOSINOPHILS | i

B |

i II".I '
LA | 1% "'-I 2
VG |\ GANCER /7|
e i ' \ iy S
T / E e
N\ f N \
| M.H...-. ||_
/ g
/
;
;
__.I'

IMMUNOLOGY

	�Biomedical Information Retrieval
	Major subjects for this lecture
	投影片編號 3
	Content Analysis
	Techniques for Content Analysis
	Text Processing
	Document Processing Steps
	Stemming and Morphological Analysis
	Recall basic indexing pipeline
	Parsing a document
	Initial stages of text processing
	Complications: Format/language
	Tokens and Terms
	Bag of Words
	Bag of Words
	投影片編號 16
	投影片編號 17
	投影片編號 18
	投影片編號 19
	投影片編號 20
	投影片編號 21
	Word embedding
	keras.layers.Embedding
	投影片編號 24
	投影片編號 25
	投影片編號 26
	投影片編號 27
	投影片編號 28
	投影片編號 29
	投影片編號 30
	投影片編號 31
	投影片編號 32
	投影片編號 33
	Word Embedding Choices
	Tokenization
	Tokenization
	Numbers
	Tokenization: language issues
	Tokenization: language issues
	Tokenization: language issues
	Stop words
	Normalization
	Normalization: other languages
	Normalization: other languages
	Case folding
	Thesauri and soundex
	Soundex
	Lemmatization
	Stemming
	Porter’s algorithm
	Typical rules in Porter
	Other stemmers
	Language-specificity
	Dictionary entries – first cut
	Word Frequency vs. Resolving Power (from van Rijsbergen 79)
	Plotting Word Frequency by Rank
	Rank Freq�1 37 system�2 32 knowledg�3 24 base�4 20 problem�5 18 abstract�6 15 model�7 15 languag�8 15 implem�9 13 reason�10 13 inform�11 11 expert�12 11 analysi�13 10 rule�14 10 program�15 10 oper�16 10 evalu�17 10 comput�18 10 case�19 9 gener�20 9 form
	Faster postings merges:�Skip pointers/Skip lists
	Recall basic merge
	Augment postings with skip pointers (at indexing time)
	Query processing with skip pointers
	Where do we place skips?
	Placing skips
	Phrase queries and positional indexes
	Phrase queries
	A first attempt: Biword indexes
	Longer phrase queries
	Extended biwords
	Issues for biword indexes
	Solution 2: Positional indexes
	Positional index example
	Processing a phrase query
	Proximity queries
	Positional index size
	Positional index size
	Rules of thumb
	Combination schemes
	Research Topics of IR
	投影片編號 79
	Intelligent Information Retrieval
	Intelligent Information Retrieval (IIR)
	Some Issues in IIR
	Document Clustering
	Document Clustering
	Text Clustering
	投影片編號 86
	Clustering as Document Ranking
	Two Queries: Two Clusterings
	Clustering Multi-Dimensional �Document Space�(image from Wise et al 95)
	投影片編號 90
	Co-citation analysis (From Garfield 98)
	Co-citation analysis (From Garfield 98)

