
Biomedical Information Retrieval

Lecture 2: Term vocabulary and posting 
lists



Major subjects for this lecture

 Preprocessing to form the 
“term vocabulary”

 Documents
 Tokenization
 What terms do we put in the index?



Information
need

Index

Pre-process

Parse

Collections

Rank

Query

text input
Term/Index ?



Content Analysis
 Automated Transformation of raw text into a 

form that represent some aspect(s) of its 
meaning

 Including, but not limited to:
 Automated Thesaurus Generation
 Phrase Detection
 Categorization
 Clustering
 Summarization



Techniques for Content Analysis
 Statistical

 Single Document
 Full Collection

 Linguistic
 Syntactic
 Semantic
 Pragmatic

 Knowledge-Based (Artificial Intelligence)
 Hybrid (Combinations)



Text Processing
 Standard Steps:

 Recognize document structure 
 titles, sections, paragraphs, etc.

 Break into tokens
 usually space and punctuation delineated
 special issues with Asian languages

 Stemming/morphological analysis
 Store in inverted index (to be discussed later)



Document Processing Steps



Stemming and Morphological Analysis

 Goal: “normalize” similar words
 Morphology (“form” of words)

 Inflectional Morphology
 E.g,. inflect verb endings and noun number
 Never change grammatical class

 dog, dogs
 tengo, tienes, tiene, tenemos, tienen

 Derivational Morphology 
 Derive one word from another, 
 Often change grammatical class

 build, building; health, healthy



Recall basic indexing pipeline

Tokenizer
Token stream. Friends Romans Countrymen

Linguistic modules

Modified tokens. friend roman countryman

Indexer

Inverted index.

friend
roman
countryman

2 4
2

13 16
1

Documents to
be indexed.

Friends, Romans, countrymen.



Parsing a document

 What format is it in?
 pdf/word/excel/html?

 What language is it in?
 What character set is in use?

Each of these is a classification problem, which 
we will study later in the course.

But these tasks are often done heuristically …



Initial stages of text processing
• Tokenization

– Cut character sequence into word tokens
• Deal with “John’s”, a state-of-the-art solution

• Normalization
– Map text and query term to same form

• You want U.S.A. and USA to match
• Stemming

– We may wish different forms of a root to match
• authorize, authorization

• Stop words
– We may omit very common words (or not)

• the, a, to, of



Complications: Format/language

 Documents being indexed can include docs 
from many different languages
 A single index may have to contain terms of 

several languages.
 Sometimes a document or its components can 

contain multiple languages/formats
 French email with a German pdf attachment.

 What is a unit document?
 A file?
 An email?  (Perhaps one of many in an mbox.)
 An email with 5 attachments?
 A group of files (PPT or LaTeX as HTML pages)



Tokens and Terms

字、詞、字串、符號、代碼…



Bag of Words

I love dogs I Love Dogs

Doc 1 1 1 1



Bag of Words
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銀蘋果
對於這袋子
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WORD EMBEDDING



keras.layers.Embedding

1

passion
x: 0.119
y: 0.212
z: 0.010



• cat

• dog • goat

• hamster
• pig

• panda



Word2Vec

• cat
• dog • goat

• hamster
• pig

• panda



Word2Vec
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“ The quick brown fox _____ over the lazy dog ”?
kicks
shots

throws
looks
jumps



“ The quick brown fox _____ over the lazy dog ”
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“ The quick brown fox _____ over the lazy dog ”

grammatical, semantical similarity



Word Embedding Choices
1. Learnable embedding
2. Word2Vec
3. GloVe
4. FastText



Tokenization
 Input: “Friends, Romans and Countrymen”
 Output: Tokens

 Friends
 Romans
 Countrymen

 Each such token is now a candidate for an index 
entry, after further processing
 Described below

 But what are valid tokens to emit?



Tokenization

 Issues in tokenization:
 Finland’s capital →

Finland? Finlands? Finland’s?
 Hewlett-Packard → Hewlett

and Packard as two tokens?
 state-of-the-art: break up hyphenated sequence.  
 co-education
 lowercase, lower-case, lower case ?
 It’s effective to get the user to put in possible hyphens

 San Francisco: one token or two?  How do 
you decide it is one token?



Numbers
 3/12/91 Mar. 12, 1991
 55 B.C.
 B-52
 My PGP key is 324a3df234cb23e
 (800) 234-2333

 Often have embedded spaces
 Often, don’t index as text

 But often very useful: think about things like looking up 
error codes/stacktraces on the web

 (One answer is using n-grams: Lecture 3)
 Will often index “meta-data” separately

 Creation date, format, etc.



Tokenization: language issues
 French

 L'ensemble → one token or two?
 L ? L’ ? Le ?
 Want l’ensemble to match with un ensemble

 German noun compounds are not segmented
 Lebensversicherungsgesellschaftsangestellter
 ‘life insurance company employee’
 German retrieval systems benefit greatly from a 

compound splitter module



Tokenization: language issues
 Chinese and Japanese have no spaces between 

words:
 莎拉波娃现在居住在美国东南部的佛罗里达。

 Not always guaranteed a unique tokenization
 Further complicated in Japanese, with multiple 

alphabets intermingled
 Dates/amounts in multiple formats

フォーチュン500社は情報不足のため時間あた$500K(約6,000万円)

Katakana Hiragana Kanji Romaji

End-user can express query entirely in hiragana!



Tokenization: language issues
 Arabic (or Hebrew) is basically written right to left, but with 

certain items like numbers written left to right
 Words are separated, but letter forms within a word form 

complex ligatures

 ← →  ← →                 ← start
 ‘Algeria achieved its independence in 1962 after 132 years of 

French occupation.’
 With Unicode, the surface presentation is complex, but the 

stored form is  straightforward



Stop words
 With a stop list, you exclude from dictionary entirely the commonest 

words. Intuition:
 They have little semantic content: the, a, and, to, be
 There are a lot of them: ~30% of postings for top 30 words

 But the trend is away from doing this:
 Good compression techniques (lecture 5) means the space for 

including stopwords in a system is very small
 Good query optimization techniques mean you pay little at query 

time for including stop words.
 You need them for:

 Phrase queries: “King of Denmark”
 Various song titles, etc.: “Let it be”, “To be or not to be”
 “Relational” queries: “flights to London”



Normalization
 Need to “normalize” terms in indexed text as 

well as query terms into the same form
 We want to match U.S.A. and USA

 We most commonly implicitly define 
equivalence classes of terms
 e.g., by deleting periods in a term

 Alternative is to do asymmetric expansion:
 Enter: window Search: window, windows
 Enter: windows Search: Windows, windows, window
 Enter: Windows Search: Windows

 Potentially more powerful, but less efficient



Normalization: other languages
 Accents: résumé vs. resume.
 Most important criterion:

 How are your users like to write their queries for 
these words?

 Even in languages that standardly have accents, 
users often may not type them

 German: Tuebingen vs. Tübingen
 Should be equivalent



Normalization: other languages
 Need to “normalize” indexed text as well as 

query terms into the same form

 Character-level alphabet detection and 
conversion
 Tokenization not separable from this.
 Sometimes ambiguous:

7月30日 vs. 7/30

Morgen will ich in MIT … 



Case folding
 Reduce all letters to lower case

 exception: upper case in mid-sentence?
 e.g., General Motors
 Fed vs. fed
 SAIL vs. sail

 Often best to lower case everything, since users 
will use lowercase regardless of ‘correct’ 
capitalization…

 Aug 2005 Google example:
 C.A.T.  Cat Fanciers website not Caterpiller Inc.



Thesauri and soundex
 Handle synonyms and homonyms

 Hand-constructed equivalence classes
 e.g., car = automobile
 color = colour

 Rewrite to form equivalence classes
 Index such equivalences

 When the document contains automobile, index 
it under car as well (usually, also vice-versa)

 Or expand query?
 When the query contains automobile, look under 

car as well



Soundex
 Traditional class of heuristics to expand a query 

into phonetic equivalents
 Language specific – mainly for names
 Invented for the US Census
 E.g., chebyshev → tchebycheff

 More on this in the next lecture



Lemmatization
 Reduce inflectional/variant forms to base form
 E.g.,

 am, are, is → be
 car, cars, car's, cars' → car

 the boy's cars are different colors → the boy car 
be different color

 Lemmatization implies doing “proper” 
reduction to dictionary headword form



Stemming
 Reduce terms to their “roots” before indexing
 “Stemming” suggest crude affix chopping

 language dependent
 e.g., automate(s), automatic, automation all 

reduced to automat.

for example compressed 
and compression are both 
accepted as equivalent to 
compress.

for exampl compress and
compress ar both accept
as equival to compress



Porter’s algorithm
 Commonest algorithm for stemming English

 Results suggest it’s at least as good as other 
stemming options

 Conventions + 5 phases of reductions
 phases applied sequentially
 each phase consists of a set of commands
 sample convention: Of the rules in a compound 

command, select the one that applies to the 
longest suffix.



Typical rules in Porter
 sses → ss
 ies → i
 ational → ate
 tional → tion

 Weight of word sensitive rules
 (m>1) EMENT →

 replacement → replac
 cement → cement



Other stemmers
 Other stemmers exist, e.g., Lovins stemmer 

http://www.comp.lancs.ac.uk/computing/research/stemming/general/lovins.htm

 Single-pass, longest suffix removal (about 250 
rules)

 Full morphological analysis – at most modest 
benefits for retrieval

 Do stemming and other normalizations help?
 English: very mixed results. Helps recall for some 

queries but harms precision on others
 E.g., operative (dentistry) ⇒ oper

 Definitely useful for Spanish, German, Finnish, …



Language-specificity
 Many of the above features embody 

transformations that are
 Language-specific and
 Often, application-specific

 These are “plug-in” addenda to the indexing 
process

 Both open source and commercial plug-ins are 
available for handling these



Dictionary entries – first cut

ensemble.french

時間.chinese

MIT.english

mit.german

guaranteed.english

entries.english

sometimes.english

tokenization.english

These may be 
grouped by 

language (or 
not…).  

More on this in 
ranking/query 

processing.



Word Frequency vs. Resolving 
Power  (from van Rijsbergen 79)

The most frequent words are not the most descriptive.
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Plotting Word Frequency by Rank
 Say for a text with 100 tokens
 Count

 How many tokens occur 1 time (50)
 How many tokens occur 2 times (20) …
 How many tokens occur 7 times (10) … 
 How many tokens occur 12 times (1)
 How many tokens occur 14 times (1)

 So things that occur the most times have the highest 
rank (rank 1).

 Things that occur the fewest times have the lowest 
rank (rank n).



Rank  Freq
1        37      system
2        32      knowledg
3        24      base
4        20      problem
5        18      abstract
6        15      model
7        15      languag
8        15      implem
9        13      reason
10       13      inform
11       11      expert
12       11      analysi
13       10      rule
14       10      program
15       10      oper
16       10      evalu
17       10      comput
18       10      case
19       9       gener
20       9       form

The Corresponding Zipf Curve



Faster postings merges:
Skip pointers/Skip lists



Recall basic merge
 Walk through the two postings simultaneously, 

in time linear in the total number of postings 
entries

128
31

2 4 8 41 48 64
1 2 3 8 11 17 21

Brutus
Caesar2 8

If the list lengths are m and n, the merge takes O(m+n)
operations.

Can we do better?
Yes (if index isn’t changing too fast).



Augment postings with skip 
pointers (at indexing time)

 Why?
 To skip postings that will not figure in the 

search results.
 How?
 Where do we place skip pointers?

1282 4 8 41 48 64

311 2 3 8 11 17 21
3111

41 128



Query processing with skip 
pointers

1282 4 8 41 48 64

311 2 3 8 11 17 21
3111

16 128

Suppose we’ve stepped through the lists until we process 
8 on each list. We match it and advance.

We then have 41 and 11 on the lower.  11 is smaller.

But the skip successor of 11 on the lower list is 31, so
we can skip ahead past the intervening postings.



Where do we place skips?
 Tradeoff:

 More skips → shorter skip spans ⇒ more likely to 
skip.  But lots of comparisons to skip pointers.

 Fewer skips → few pointer comparison, but then 
long skip spans ⇒ few successful skips.



Placing skips
 Simple heuristic: for postings of length L, use √L

evenly-spaced skip pointers.
 This ignores the distribution of query terms.
 Easy if the index is relatively static; harder if L keeps 

changing because of updates.
 This definitely used to help; with modern hardware 

it may not (Bahle et al. 2002)
 The I/O cost of loading a bigger postings list can 

outweigh the gains from quicker in memory 
merging!



Phrase queries and positional 
indexes



Phrase queries
 Want to be able to answer queries such as 

“stanford university” – as a phrase
 Thus the sentence “I went to university at 

Stanford” is not a match. 
 The concept of phrase queries has proven easily 

understood by users; one of the few “advanced 
search” ideas that works

 Many more queries are implicit phrase queries
 For this, it no longer suffices to store only

<term : docs> entries



A first attempt: Biword indexes
 Index every consecutive pair of terms in the text 

as a phrase
 For example the text “Friends, Romans, 

Countrymen” would generate the biwords
 friends romans
 romans countrymen

 Each of these biwords is now a dictionary term
 Two-word phrase query-processing is now 

immediate.



Longer phrase queries
 Longer phrases are processed as we did with 

wild-cards:
 stanford university palo alto can be broken 

into the Boolean query on biwords:
stanford university AND university palo AND

palo alto

Without the docs, we cannot verify that the docs 
matching the above Boolean query do contain 
the phrase.

Can have false positives!



Extended biwords
 Parse the indexed text and perform part-of-speech-

tagging (POST).
 Bucket the terms into (say) Nouns (N) and 

articles/prepositions (X).
 Now deem any string of terms of the form NX*N to be an 

extended biword.
 Each such extended biword is now made a term in the 

dictionary.
 Example:  catcher in the rye

N           X   X    N
 Query processing: parse it into N’s and X’s

 Segment query into enhanced biwords
 Look up index



Issues for biword indexes
 False positives, as noted before
 Index blowup due to bigger dictionary

 For extended biword index, parsing longer 
queries into conjunctions:
 E.g., the query tangerine trees and marmalade 

skies is parsed into
 tangerine trees AND trees and marmalade 

AND marmalade skies

 Not standard solution (for all biwords)



Solution 2: Positional indexes
 In the postings, store, for each term, entries of 

the form:
<term, number of docs containing term;
doc1: position1, position2 … ;
doc2: position1, position2 … ;
etc.>



Positional index example

 We use a merge algorithm recursively at the 
document level

 But we now need to deal with more than just 
equality

<be: 993427;
1: 7, 18, 33, 72, 86, 231;
2: 3, 149;
4: 17, 191, 291, 430, 434;
5: 363, 367, …>

Which of docs 1,2,4,5
could contain “to be

or not to be”?



Processing a phrase query
 Extract inverted index entries for each distinct 

term: to, be, or, not.
 Merge their doc:position lists to enumerate all 

positions with “to be or not to be”.
 to: 

 2:1,17,74,222,551; 4:8,16,190,429,433;
7:13,23,191; ...

 be:  
 1:17,19; 4:17,191,291,430,434;

5:14,19,101; ...
 Same general method for proximity searches



Proximity queries
 LIMIT! /3 STATUTE /3 FEDERAL /2 TORT 

Here, /k means “within k words of”.
 Clearly, positional indexes can be used for 

such queries; biword indexes cannot.
 Exercise: Adapt the linear merge of postings 

to handle proximity queries.  Can you make it 
work for any value of k?
 This is a little tricky to do correctly and efficiently
 See Figure 2.12 of IIR
 There’s likely to be a problem on it!



Positional index size
 You can compress position values/offsets: we’ll 

talk about that in lecture 5 
 Nevertheless, a positional index expands 

postings storage substantially
 Nevertheless, a positional index is now 

standardly used because of the power and 
usefulness of phrase and proximity queries … 
whether used explicitly or implicitly in a ranking 
retrieval system.



Positional index size
 Need an entry for each occurrence, not just 

once per document
 Index size depends on average document size

 Average web page has <1000 terms
 SEC filings, books, even some epic poems … 

easily 100,000 terms
 Consider a term with frequency 0.1%

Why?

1001100,000
111000

Positional postingsPostingsDocument size



Rules of thumb
 A positional index is 2–4 as large as a non-

positional index
 Positional index size 35–50% of volume of 

original text
 Caveat: all of this holds for “English-like” 

languages



Combination schemes
 These two approaches can be profitably combined

 For particular phrases (“Michael Jackson”, 
“Britney Spears”) it is inefficient to keep on 
merging positional postings lists
 Even more so for phrases like “The Who”

 Williams et al. (2004) evaluate a more sophisticated 
mixed indexing scheme
 A typical web query mixture was executed in ¼

of the time of using just a positional index
 It required 26% more space than having a 

positional index alone



Research Topics of IR





Intelligent Information Retrieval 



Intelligent Information Retrieval (IIR)

Information
Retrieval

Machine
Learning

Adaptive 
System



Some Issues in IIR

 Document Clustering
 Automatic Text Categorization
 Feature Selection
 Topic Detection and Tracking
 New Information Detection



Document Clustering
 Technique for analyzing structures and relations 

in data
 No classes to be identified prior to process
 Intensive literature on

 medical data
 census and survey data
 literature citations
 document retrieval



Document Clustering

 Web browsing (“Scatter/Gather”)
 Taxonomy creation (Yahoo! )
 Term thesaurus development (WordNet)
 Query-log analysis on the web
 User grouping for email routing
 Summarization



Text Clustering
 Finds overall similarities among groups of 

documents
 Finds overall similarities among groups of 

tokens
 Picks out some themes, ignores others





Clustering as Document Ranking

 Cluster entire collection
 Find cluster centroid that best matches the 

query
 This has been explored extensively

 it is expensive
 it doesn’t work well



Two Queries: Two Clusterings

AUTO, CAR, ELECTRIC AUTO, CAR, SAFETY

The main differences are the clusters that are central to the query

8 control drive accident … 

25  battery california technology … 

48  import j. rate honda toyota … 

16  export international unit japan 

3  service employee automatic … 

6 control inventory integrate …

10  investigation washington …

12  study fuel death bag air … 

61  sale domestic truck import … 

11  japan export defect unite …



Clustering Multi-Dimensional 
Document Space
(image from Wise et al 95)



Kohonen Feature Maps on Text
(from Chen et al., JASIS 49(7))



Co-citation analysis (From Garfield 98)



Co-citation analysis (From Garfield 98)
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