
Lecture 3

Terms Weighting -- TFIDF

Terms?

Pointers

Terms
and

counts

Lists of
docIDs

Zipf Distribution

 The Important Points:
 a few elements occur very frequently
 a medium number of elements have medium

frequency
 many elements occur very infrequently

Observation: MANY phenomena can be
characterized this way.

 Words in a text collection
 Library book checkout patterns
 Incoming Web Page Requests (Nielsen)

 Outgoing Web Page Requests (Cunha & Crovella)

 Document Size on Web (Cunha & Crovella)

Sample Word Frequency Data
(from B. Croft, UMass)

Zipf Distribution

The product of the
frequency of words (f) and

their rank (r) is
approximately constant

Zipf Distribution
(linear and log scale)

Zipf Distribution

 The product of the frequency of words (f) and their rank (r)
is approximately constant
 Rank = order of words’ frequency of occurrence

 Another way to state this is with an approximately correct rule of
thumb:
 Say the most common term occurs C times
 The second most common occurs C/2 times
 The third most common occurs C/3 times
 …

10/
/1

NC
rCf

≅
∗=

Very frequent word stems
WORD FREQ
u 63245
ha 65470
california 67251
m 67903

1998 68662
system 69345
t 70014
about 70923
servic 71822
work 71958
home 72131
other 72726
research 74264

1997 75323
can 76762
next 77973
your 78489
all 79993
public 81427
us 82551
c 83250
www 87029
wa 92384
program 95260

not 100204
http 100696
d 101034
html 103698
student 104635
univers 105183
inform 106463
will 109700
new 115937
have 119428
page 128702
messag 141542
from 147440
you 162499
edu 167298
be 185162
publib 189334
librari 189347
i 190635
lib 223851
that 227311
s 234467
berkelei 245406
re 272123
web 280966
archiv 305834

Sheet1

		WORD		FREQ

		u		63245

		ha		65470

		california		67251

		m		67903

		1998		68662

		system		69345

		t		70014

		about		70923

		servic		71822

		work		71958

		home		72131

		other		72726

		research		74264

		1997		75323

		can		76762

		next		77973

		your		78489

		all		79993

		public		81427

		us		82551

		c		83250

		www		87029

		wa		92384

		program		95260

		we		99220

		not		100204

		http		100696

		d		101034

		html		103698

		student		104635

		univers		105183

		inform		106463

		will		109700

		new		115937

		have		119428

		page		128702

		messag		141542

		from		147440

		you		162499

		edu		167298

		be		185162

		publib		189334

		librari		189347

		i		190635

		lib		223851

		that		227311

		s		234467

		berkelei		245406

		re		272123

		web		280966

		archiv		305834

Sheet1

		WORD		FREQ

		u		63245

		ha		65470

		california		67251

		m		67903

		1998		68662

		system		69345

		t		70014

		about		70923

		servic		71822

		work		71958

		home		72131

		other		72726

		research		74264

		1997		75323

		can		76762

		next		77973

		your		78489

		all		79993

		public		81427

		us		82551

		c		83250

		www		87029

		wa		92384

		program		95260

		we		99220

		not		100204

		http		100696

		d		101034

		html		103698

		student		104635

		univers		105183

		inform		106463

		will		109700

		new		115937

		have		119428

		page		128702

		messag		141542

		from		147440

		you		162499

		edu		167298

		be		185162

		publib		189334

		librari		189347

		i		190635

		lib		223851

		that		227311

		s		234467

		berkelei		245406

		re		272123

		web		280966

		archiv		305834

Words that occur few times
WORD FREQ
agenda�augu 1
an�electronic 1
center��janu 1
packard�equi 1
system��july 1
systems�cs1 1
today�mcb 1
workshops�fin 1
workshops�th 1
�lollini 1
0+ 1

0 1
00summary 1

35816 1
35823 1

01d 1
35830 1
35837 1

02-156-10 1
35844 1
35851 1

02aframst 1
311 1
313 1

03agenvchm 1
401 1
408 1

408 1
422 1
424 1
429 1

04agrcecon 1
04cklist 1
05-128-10 1

501 1
506 1

05amstud 1
06anhist 1
07-149 1
07-800-80 1
07anthro 1
08apst 1

Sheet1

		WORD		FREQ

		agenda�august		1

		an�electronic		1

		center��january		1

		packard�equipment		1

		system��july		1

		systems�cs186		1

		today�mcb		1

		workshops�finding		1

		workshops�the		1

		lollini		1

		0+		1

		0		1

		00summary		1

		35816		1

		35823		1

		01d		1

		35830		1

		35837		1

		02-156-10		1

		35844		1

		35851		1

		02aframst		1

		311		1

		313		1

		03agenvchm		1

		401		1

		408		1

		422		1

		424		1

		429		1

		04agrcecon		1

		04cklist		1

		05-128-10		1

		501		1

		506		1

		05amstud		1

		06anhist		1

		07-149		1

		07-800-80		1

		07anthro		1

		08apst		1

		0917+7122		1

Sheet1

		WORD		FREQ

		agenda�august		1

		an�electronic		1

		center��january		1

		packard�equipment		1

		system��july		1

		systems�cs186		1

		today�mcb		1

		workshops�finding		1

		workshops�the		1

		lollini		1

		0+		1

		0		1

		00summary		1

		35816		1

		35823		1

		01d		1

		35830		1

		35837		1

		02-156-10		1

		35844		1

		35851		1

		02aframst		1

		311		1

		313		1

		03agenvchm		1

		401		1

		408		1

		422		1

		424		1

		429		1

		04agrcecon		1

		04cklist		1

		05-128-10		1

		501		1

		506		1

		05amstud		1

		06anhist		1

		07-149		1

		07-800-80		1

		07anthro		1

		08apst		1

		0917+7122		1

Word Frequency vs. Resolving Power
(from van Rijsbergen 79)

The most frequent words are not the most descriptive.

Upper cut-off

Significant words

Words by rank order

Fr
eq

ue
nc

y
of

 w
or

ds

Lower cut-off

Resolving power of
Significant words

Statistical Independence

Two events x and y are statistically independent if
the product of their probability of their happening
individually equals their probability of happening
together.

),()()(yxPyPxP =

Indexing

 indexing: assign identifiers to text items.
 assign: manual vs. automatic indexing
 identifiers:

 objective vs. nonobjective text identifiers
cataloging rules define, e.g., author names, publisher
names, dates of publications, …

 controlled vs. uncontrolled vocabularies
instruction manuals, terminological schedules, …

 single-term vs. term phrase

Two Issues

 Issue 1: indexing exhaustivity
 exhaustive: assign a large number of terms
 nonexhaustive

 Issue 2: term specificity
 broad terms (generic)

cannot distinguish relevant from nonrelevant items
 narrow terms (specific)

retrieve relatively fewer items, but most of them are relevant

Parameters of
retrieval effectiveness
 Recall

 Precision

 Goal
high recall and high precision

P =
Number of relevant items retrieved

Total number of items retrieved

R =
Number of relevant items retrieved

Total number of relevant items in collection

Nonrelevant
Items

Relevant
Items

Retrieved
Partab

c d

Precision a
a + b

=Recall a
a + d

=

A Joint Measure

 F-score

 β is a parameter that encode the importance of
recall and procedure.

 β=1: equal weight
 β>1: precision is more important
 β<1: recall is more important

F P R
P R

=
+ × ×
× +

()β
β

2

2

1

Choices of Recall and Precision

 Both recall and precision vary from 0 to 1.
 In principle, the average user wants to achieve

both high recall and high precision.
 In practice, a compromise must be reached

because simultaneously optimizing recall and
precision is not normally achievable.

Choices of Recall and Precision (Continued)

 Particular choices of indexing and search policies
have produced variations in performance ranging
from 0.8 precision and 0.2 recall to 0.1 precision
and 0.8 recall.

 In many circumstance, both the recall and the
precision varying between 0.5 and 0.6 are more
satisfactory for the average users.

Term-Frequency Consideration
 Function words

 for example, "and", "or", "of", "but", …
 the frequencies of these words are high in all texts

 Content words
 words that actually relate to document content
 varying frequencies in the different texts of a

collect
 indicate term importance for content

A Frequency-Based Indexing Method

 Eliminate common function words from the document
texts by consulting a special dictionary, or stop list,
containing a list of high frequency function words.

 Compute the term frequency tfij for all remaining terms Tj
in each document Di, specifying the number of
occurrences of Tj in Di.

 Choose a threshold frequency T, and assign to each
document Di all term Tj for which tfij > T.

Discussions

 high-frequency terms
favor recall

 high precision
the ability to distinguish individual documents
from each other

 high-frequency terms
good for precision when its term frequency is not
equally high in all documents.

Ranked retrieval
 Thus far, our queries have all been Boolean.

 Documents either match or don’t.
 Good for expert users with precise understanding

of their needs and the collection.
 Also good for applications: Applications can

easily consume 1000s of results.
 Not good for the majority of users.
 Most users incapable of writing Boolean queries

(or they are, but they think it’s too much work).
 Most users don’t want to wade through 1000s of

results.
 This is particularly true of web search.

Problem with Boolean search:
feast or famine

 Boolean queries often result in either too few (=0)
or too many (1000s) results.

 Query 1: “standard user iPhone6 ” → 200,000
hits

 Query 2: “standard user iPhone6 no SIMcard
found”: 0 hits

 It takes skill to come up with a query that
produces a manageable number of hits.

 With a ranked list of documents it does not
matter how large the retrieved set is.

Scoring as the basis of ranked
retrieval

 We wish to return in order the documents most
likely to be useful to the searcher

 How can we rank-order the documents in the
collection with respect to a query?

 Assign a score – say in [0, 1] – to each document
 This score measures how well document and

query “match”.

Query-document matching scores

 We need a way of assigning a score to a
query/document pair

 Let’s start with a one-term query
 If the query term does not occur in the document:

score should be 0
 The more frequent the query term in the

document, the higher the score (should be)
 We will look at a number of alternatives for this.

Jaccard coefficient

 Recall set similarity: A commonly used measure
of overlap of two sets A and B

 jaccard(A,B) = |A ∩ B| / |A ∪ B|
 jaccard(A,A) = 1
 jaccard(A,B) = 0 if A ∩ B = 0
 A and B don’t have to be the same size.
 Always assigns a number between 0 and 1.

Jaccard coefficient: Scoring
example

 What is the query-document match score that the
Jaccard coefficient computes for each of the two
documents below?

 Query: ides of march
 Document 1: caesar died in march
 Document 2: the long march

Issues with Jaccard for scoring

 It doesn’t consider term frequency (how many
times a term occurs in a document)

 Rare terms in a collection are more informative
than frequent terms. Jaccard doesn’t consider
this information

 We need a more sophisticated way of
normalizing for length

 Later in this lecture, we’ll use
 . . . instead of |A ∩ B|/|A ∪ B| (Jaccard) for

length normalization.

| B A|/| B A|

Recall (Lecture 1): Binary term-
document incidence matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Each document is represented by a binary vector ∈ {0,1}|V|

Shakepeare

				Antony and Cleopatra		Julius Caesar		The Tempest		Hamlet		Othello		Macbeth

		Antony		1		1		0		0		0		1

		Brutus		1		1		0		1		0		0

		Caesar		1		1		0		1		1		1

		Calpurnia		0		1		0		0		0		0

		Cleopatra		1		0		0		0		0		0

		mercy		1		0		1		1		1		1

		worser		1		0		1		1		1		0

Term-document count matrices

 Consider the number of occurrences of a term in
a document:
 Each document is a count vector in ℕv: a column

below

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1
worser 2 0 1 1 1 0

Shakepeare

				Antony and Cleopatra		Julius Caesar		The Tempest		Hamlet		Othello		Macbeth

		Antony		157		73		0		0		0		0

		Brutus		4		157		0		1		0		0

		Caesar		232		227		0		2		1		1

		Calpurnia		0		10		0		0		0		0

		Cleopatra		57		0		0		0		0		0

		mercy		2		0		3		5		5		1

		worser		2		0		1		1		1		0

Term-document count matrices

 Consider the number of occurrences of a term in
a document:
 Each document is a count vector in ℕv: a column

below

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1
worser 2 0 1 1 1 0

Sec. 6.2

Shakepeare

				Antony and Cleopatra		Julius Caesar		The Tempest		Hamlet		Othello		Macbeth

		Antony		157		73		0		0		0		0

		Brutus		4		157		0		1		0		0

		Caesar		232		227		0		2		1		1

		Calpurnia		0		10		0		0		0		0

		Cleopatra		57		0		0		0		0		0

		mercy		2		0		3		5		5		1

		worser		2		0		1		1		1		0

Bag of words model

 Vector representation doesn’t consider the
ordering of words in a document

 John is quicker than Mary and Mary is quicker
than John have the same vectors

 This is called the bag of words model.
 In a sense, this is a step back: The positional

index was able to distinguish these two
documents.

 We will look at “recovering” positional information
later in this course.

 For now: bag of words model

Term frequency tf

 The term frequency tft,d of term t in document d is
defined as the number of times that t occurs in d.

 We want to use tf when computing query-
document match scores. But how?

 Raw term frequency is not what we want:
 A document with 10 occurrences of the term is

more relevant than a document with 1 occurrence
of the term.

 But not 10 times more relevant.
 Relevance does not increase proportionally with

term frequency. NB: frequency = count in IR

Log-frequency weighting

 The log frequency weight of term t in d is

 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.
 Score for a document-query pair: sum over terms

t in both q and d:
 score

 The score is 0 if none of the query terms is
present in the document.

 >+

=
otherwise 0,

0 tfif, tflog 1
 10 t,dt,d

t,dw

∑ ∩∈
+=

dqt dt) tflog (1 ,

Sec. 6.2

Document frequency

 Rare terms are more informative than frequent terms
 Recall stop words

 Consider a term in the query that is rare in the
collection (e.g., arachnocentric)

 A document containing this term is very likely to be
relevant to the query arachnocentric

 → We want a high weight for rare terms like
arachnocentric.

Sec. 6.2.1

Document frequency, continued

 Consider a query term that is frequent in the
collection (e.g., high, increase, line)

 A document containing such a term is more likely
to be relevant than a document that doesn’t, but
it’s not a sure indicator of relevance.

 → For frequent terms, we want positive weights
for words like high, increase, and line, but lower
weights than for rare terms.

 We will use document frequency (df) to capture
this in the score.

 df (≤ N) is the number of documents that contain
the term

idf weight

 dft is the document frequency of t: the number of
documents that contain t
 df is a measure of the informativeness of t

 We define the idf (inverse document frequency)
of t by

 We use log N/dft instead of N/dft to “dampen” the
effect of idf.

tt N/df log idf 10=

Will turn out the base of the log is immaterial.

idf example, suppose N= 1 million
term dft idft

calpurnia 1 6

animal 100 4

sunday 1,000 3

fly 10,000 2

under 100,000 1

the 1,000,000 0

There is one idf value for each term t in a collection.

Collection vs. Document frequency
 The collection frequency of t is the number of

occurrences of t in the collection, counting
multiple occurrences.

 Example:

 Which word is a better search term (and should
get a higher weight)?

Word Collection frequency Document frequency

insurance 10440 3997

try 10422 8760

tf-idf weighting

 The tf-idf weight of a term is the product of its tf
weight and its idf weight.

 Best known weighting scheme in information retrieval
 Note: the “-” in tf-idf is a hyphen, not a minus sign!
 Alternative names: tf.idf, tf x idf
 Increases with the number of occurrences within a

document
 Increases with the rarity of the term in the collection

tdt N
dt

df/log)tflog1(w 10,,
×+=

Binary → count → weight matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88
worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued
vector of tf-idf weights ∈ R|V|

Shakepeare

				Antony and Cleopatra		Julius Caesar		The Tempest		Hamlet		Othello		Macbeth

		Antony		5.25		3.18		0		0		0		0.35

		Brutus		1.21		6.1		0		1		0		0

		Caesar		8.59		2.54		0		1.51		0.25		0

		Calpurnia		0		1.54		0		0		0		0

		Cleopatra		2.85		0		0		0		0		0

		mercy		1.51		0		1.9		0.12		5.25		0.88

		worser		1.37		0		0.11		4.15		0.25		1.95

Documents as vectors

 So we have a |V|-dimensional vector space
 Terms are axes of the space
 Documents are points or vectors in this space
 Very high-dimensional: hundreds of millions of

dimensions when you apply this to a web search
engine

 This is a very sparse vector - most entries are
zero.

Queries as vectors

 Key idea 1: Do the same for queries: represent
them as vectors in the space

 Key idea 2: Rank documents according to their
proximity to the query in this space

 proximity = similarity of vectors
 proximity ≈ inverse of distance
 Recall: We do this because we want to get away

from the you’re-either-in-or-out Boolean model.
 Instead: rank more relevant documents higher

than less relevant documents

Formalizing vector space proximity

 First cut: distance between two points
 (= distance between the end points of the two

vectors)
 Euclidean distance?
 Euclidean distance is a bad idea . . .
 . . . because Euclidean distance is large for

vectors of different lengths.

Why distance is a bad idea
The Euclidean
distance between q
and d2 is large even
though the
distribution of terms
in the query q and
the distribution of
terms in the
document d2 are
very similar.

Use angle instead of distance

 Thought experiment: take a document d and
append it to itself. Call this document d′.

 “Semantically” d and d′ have the same content
 The Euclidean distance between the two

documents can be quite large
 The angle between the two documents is 0,

corresponding to maximal similarity.

 Key idea: Rank documents according to angle
with query.

Similarity of document dj w.r.t. query q

 The correlation between vectors dj and q

 | q | does not affect the ranking
 | dj | provides a normalization

∑∑
∑

==

=

×

×
=

×
•

=

t
j qi

t
i ji

t
i qiji

j

j
j

ww

ww

qd
qdqdsim

1
2
,1

2
,

1 ,,

||||
),(

Q

dj

θ

cos(dj,q)

From angles to cosines

 The following two notions are equivalent.
 Rank documents in decreasing order of the angle

between query and document
 Rank documents in increasing order of

cosine(query,document)
 Cosine is a monotonically decreasing function for

the interval [0o, 180o]

Length normalization

 A vector can be (length-) normalized by dividing
each of its components by its length – for this we
use the L2 norm:

 Dividing a vector by its L2 norm makes it a unit
(length) vector

 Effect on the two documents d and d′ (d
appended to itself) from earlier slide: they have
identical vectors after length-normalization.

∑=
i ixx 2

2

cosine(query,document)

∑∑
∑

==

==•=
•

=
V

i i
V

i i

V

i ii

dq

dq

d
d

q
q

dq
dqdq

1
2

1
2

1),cos(

Dot product Unit vectors

qi is the tf-idf weight of term i in the query
di is the tf-idf weight of term i in the document
cos(q,d) is the cosine similarity of q and d … or,
equivalently, the cosine of the angle between q and d.

Cosine similarity amongst 3 documents

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

wuthering 0 0 38

How similar are
the novels
SaS: Sense and
Sensibility
PaP: Pride and
Prejudice, and
WH: Wuthering
Heights?

Term frequencies (counts)

3 documents example contd.
Log frequency weighting

term SaS PaP WH
affection 3.06 2.76 2.30
jealous 2.00 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

After normalization

term SaS PaP WH
affection 0.789 0.832 0.524
jealous 0.515 0.555 0.465
gossip 0.335 0 0.405
wuthering 0 0 0.588

cos(SaS,PaP) ≈
0.789 ∗ 0.832 + 0.515 ∗ 0.555 + 0.335 ∗ 0.0 + 0.0 ∗ 0.0
≈ 0.94
cos(SaS,WH) ≈ 0.79
cos(PaP,WH) ≈ 0.69

Why do we have cos(SaS,PaP) > cos(SAS,WH)?

Computing cosine scores

tf-idf weighting has many variants

Columns headed ‘n’ are acronyms for weight schemes.

Why is the base of the log in idf immaterial?

Weighting may differ in queries vs
documents

 Many search engines allow for different
weightings for queries vs documents

 To denote the combination in use in an engine,
we use the notation qqq.ddd with the acronyms
from the previous table

 Example: ltn.ltc means:
 Query: logarithmic tf (l in leftmost column), idf (t

in second column), no normalization …
 Document logarithmic tf, no idf and cosine

normalization
Is this a bad idea?

tf-idf example: ltn.lnc

Term Query Document Prod
tf-raw tf-wt df idf wt tf-raw tf-wt wt n’lized

auto 0 0 5000 2.3 0 1 1 1 0.52 0
best 1 1 50000 1.3 1.3 0 0 0 0 0
car 1 1 10000 2.0 2.0 1 1 1 0.52 1.04
insurance 1 1 1000 3.0 3.0 2 1.3 1 0.68 2.04

Document: car insurance auto insurance
Query: best car insurance

Exercise: what is N, the number of docs?

Score = 0+0+1.04+2.04 = 3.08

Doc length = 92.11101 2222 ≈+++

Summary – vector space ranking

 Represent the query as a weighted tf-idf vector
 Represent each document as a weighted tf-idf vector
 Compute the cosine similarity score for the query

vector and each document vector
 Rank documents with respect to the query by score
 Return the top K (e.g., K = 10) to the user

Vector Representation of Text

Word Embedding Technique
(word2vec)

Word to vector (word2vector)

Problem?

Example

Word Representations
Traditional Method - Bag of Words Model Word Embeddings

• Uses one hot encoding

• Each word in the vocabulary is
represented by one bit position in a
HUGE vector.

• For example, if we have a vocabulary
of 10000 words, and “Hello” is the 4th

word in the dictionary, it would be
represented by: 0 0 0 1 0 0 0
0 0 0

• Context information is not utilized

• Stores each word in as a point in
space, where it is represented by a
vector of fixed number of dimensions
(generally 300)

• Unsupervised, built just by reading
huge corpus

• For example, “Hello” might be
represented as :
[0.4, -0.11, 0.55, 0.3 . . . 0.1, 0.02]

• Dimensions are basically projections
along different axes, more of a
mathematical concept.

Architecture

To compare pieces of text
 We need effective representation of

 Words
 Sentences
 Text

 Approach 1: Use existing thesauri or ontologies like
WordNet and Snomed CT (for medical).
Drawbacks:
 Manual
 Not context specific

 Approach 2: Use co-occurrences for word similarity.
Drawbacks:
 Quadratic space needed
 Relative position and order of words not considered

Approach 3: low dimensional vectors

66

Example of Approach 3: low dimensional
vectors
 An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence [Rohde et al. 2005]

67

Problems with SVD

 Computational cost scales quadratically for n x m
matrix: O(mn2) flops (when n<m)

 Hard to incorporate new words or documents
 Does not consider order of words

68

word2vec approach to represent the
meaning of word

 Represent each word with a low-dimensional
vector

 Word similarity = vector similarity
 Key idea: Predict surrounding words of every

word
 Faster and can easily incorporate a new

sentence/document or add a word to the
vocabulary

69

Represent the meaning of word –
word2vec

 2 basic neural network models:
 Continuous Bag of Word (CBOW): use a window of

word to predict the middle word
 Skip-gram (SG): use a word to predict the

surrounding ones in window.

70

Word2vec – Continuous Bag of
Word

 E.g. “The cat sat on floor”
 Window size = 2

71

the

cat

on

floor

sat

72

0
1
0
0
0
0
0
0
…

0

0
0
0
1
0
0
0
0
…

0

cat

on

0
0
0
0
0
0
0
1
…

0

Input layer

Hidden layer

sat

Output layer

one-hot
vector

one-hot
vector

Index of cat in vocabulary

73

0
1
0
0
0
0
0
0
…

0

0
0
0
1
0
0
0
0
…

0

cat

on

0
0
0
0
0
0
0
1
…

0

Input layer

Hidden layer

sat

Output layer

V-dim

V-dim

N-dim V-dim

N will be the size of word vector

We must learn W and W’

74

0
1
0
0
0
0
0
0
…

0

0
0
0
1
0
0
0
0
…

0

xcat

xon

0
0
0
0
0
0
0
1
…

0

Input layer

Hidden layer

sat

Output layer

V-dim

V-dim

N-dim

V-dim

+

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

0
1
0
0
0
0
0
0
…

0

2.4

2.6

…

…

1.8

75

0
1
0
0
0
0
0
0
…

0

0
0
0
1
0
0
0
0
…

0

xcat

xon

0
0
0
0
0
0
0
1
…

0

Input layer

Hidden layer

sat

Output layer

V-dim

V-dim

N-dim

V-dim

+

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

0
0
0
1
0
0
0
0
…

0

1.8

2.9

…

…

1.9

76

0
1
0
0
0
0
0
0
…

0

0
0
0
1
0
0
0
0
…

0

cat

on

0
0
0
0
0
0
0
1
…

0

Input layer

Hidden layer Output layer

V-dim

V-dim

N-dim

V-dim

N will be the size of word vector

77

0
1
0
0
0
0
0
0
…

0

0
0
0
1
0
0
0
0
…

0

cat

on

0
0
0
0
0
0
0
1
…

0

Input layer

Hidden layer Output layer

V-dim

V-dim

N-dim

V-dim

N will be the size of word vector

0.01

0.02

0.00

0.02

0.01

0.02

0.01

0.7

…

0.00

0
1
0
0
0
0
0
0
…

0

0
0
0
1
0
0
0
0
…

0

xcat

xon

0
0
0
0
0
0
0
1
…

0

Input layer

Hidden layer

sat

Output layer

V-dim

V-dim

N-dim

V-dim

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

Contain word’s vectors

We can consider either W or W’ as the word’s
representation. Or even take the average.

簡報者
簡報註解
W contains input word vectors.W’ contains output word vectors.We can consider either W or W’ as the word’s representation. Or even take the average.

Some interesting results

79

Word analogies

80

Represent the meaning of sentence/text

 Simple approach: take avg of the word2vecs of its
words

 Another approach: Paragraph vector (2014, Quoc
Le, Mikolov)
 Extend word2vec to text level
 Also two models: add paragraph vector as the

input

81

Applications

 Word Similarity: Edit Distance, WordNet, Porter's
Stemmer, Lemmatization using dictionaries

 Search, e.g., query expansion
 Machine Translation
 Part-of-Speech and Named Entity Recognition
 Relation extraction
 Sentiment analysis
 Semantic Analysis of Documents
 Clustering

82

	投影片編號 1
	Terms?
	Zipf Distribution
	Observation: MANY phenomena can be characterized this way.
	Sample Word Frequency Data�(from B. Croft, UMass)
	Zipf Distribution
	Zipf Distribution�(linear and log scale)
	Zipf Distribution
	Very frequent word stems
	Words that occur few times
	Word Frequency vs. Resolving Power �(from van Rijsbergen 79)
	Statistical Independence
	Indexing
	Two Issues
	Parameters of �retrieval effectiveness
	投影片編號 16
	A Joint Measure
	Choices of Recall and Precision
	Choices of Recall and Precision (Continued)
	Term-Frequency Consideration
	A Frequency-Based Indexing Method
	Discussions
	Ranked retrieval
	Problem with Boolean search: feast or famine
	Scoring as the basis of ranked retrieval
	Query-document matching scores
	Jaccard coefficient
	Jaccard coefficient: Scoring example
	Issues with Jaccard for scoring
	Recall (Lecture 1): Binary term-document incidence matrix
	Term-document count matrices
	Term-document count matrices
	Bag of words model
	Term frequency tf
	Log-frequency weighting
	Document frequency
	Document frequency, continued
	idf weight
	idf example, suppose N= 1 million
	Collection vs. Document frequency
	tf-idf weighting
	Binary → count → weight matrix
	Documents as vectors
	Queries as vectors
	Formalizing vector space proximity
	Why distance is a bad idea
	Use angle instead of distance
	Similarity of document dj w.r.t. query q
	From angles to cosines
	Length normalization
	cosine(query,document)
	Cosine similarity amongst 3 documents
	3 documents example contd.
	Computing cosine scores
	tf-idf weighting has many variants
	Weighting may differ in queries vs documents
	tf-idf example: ltn.lnc
	Summary – vector space ranking
	Vector Representation of Text
	Word to vector (word2vector)
	Problem?
	Example
	Word Representations
	Architecture
	To compare pieces of text
	Approach 3: low dimensional vectors
	Example of Approach 3: low dimensional vectors
	Problems with SVD
	word2vec approach to represent the meaning of word
	Represent the meaning of word – word2vec
	Word2vec – Continuous Bag of Word
	投影片編號 72
	投影片編號 73
	投影片編號 74
	投影片編號 75
	投影片編號 76
	投影片編號 77
	投影片編號 78
	Some interesting results
	Word analogies
	Represent the meaning of sentence/text
	Applications

