
Lecture 3

Terms Weighting -- TFIDF
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Zipf Distribution

 The Important Points:
 a few elements occur very frequently
 a medium number of elements have medium 

frequency
 many elements occur very infrequently



Observation: MANY phenomena can be 
characterized this way.

 Words in a text collection
 Library book checkout patterns
 Incoming Web Page Requests (Nielsen)

 Outgoing Web Page Requests (Cunha & Crovella)

 Document Size on Web (Cunha & Crovella)



Sample Word Frequency Data
(from B. Croft, UMass)



Zipf Distribution

The product of the 
frequency of words (f) and 

their rank (r) is 
approximately constant



Zipf Distribution
(linear and log scale)



Zipf Distribution

 The product of the frequency of words (f) and their rank (r) 
is approximately constant
 Rank = order of words’ frequency of occurrence

 Another way to state this is with an approximately correct rule of 
thumb:
 Say the most common term occurs C times
 The second most common occurs C/2 times
 The third most common occurs C/3 times
 …
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Very frequent word stems
WORD FREQ
u 63245
ha 65470
california 67251
m 67903

1998 68662
system 69345
t 70014
about 70923
servic 71822
work 71958
home 72131
other 72726
research 74264

1997 75323
can 76762
next 77973
your 78489
all 79993
public 81427
us 82551
c 83250
www 87029
wa 92384
program 95260

not 100204
http 100696
d 101034
html 103698
student 104635
univers 105183
inform 106463
will 109700
new 115937
have 119428
page 128702
messag 141542
from 147440
you 162499
edu 167298
be 185162
publib 189334
librari 189347
i 190635
lib 223851
that 227311
s 234467
berkelei 245406
re 272123
web 280966
archiv 305834
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Words that occur few times 
WORD FREQ
agenda�augu 1
an�electronic 1
center��janu 1
packard�equi 1
system��july 1
systems�cs1 1
today�mcb 1
workshops�fin 1
workshops�th 1
�lollini 1
0+ 1

0 1
00summary 1

35816 1
35823 1

01d 1
35830 1
35837 1

02-156-10 1
35844 1
35851 1

02aframst 1
311 1
313 1

03agenvchm 1
401 1
408 1

408 1
422 1
424 1
429 1

04agrcecon 1
04cklist 1
05-128-10 1

501 1
506 1

05amstud 1
06anhist 1
07-149 1
07-800-80 1
07anthro 1
08apst 1
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Word Frequency vs. Resolving Power  
(from van Rijsbergen 79)

The most frequent words are not the most descriptive.
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Statistical Independence

Two events x and y are statistically independent if 
the product of their probability of their happening 
individually equals their probability of happening 
together.

),()()( yxPyPxP =



Indexing

 indexing: assign identifiers to text items.
 assign: manual vs. automatic indexing
 identifiers:

 objective vs. nonobjective text identifiers 
cataloging rules define, e.g., author names, publisher 
names, dates of publications, …

 controlled vs. uncontrolled vocabularies
instruction manuals, terminological schedules, …

 single-term vs. term phrase



Two Issues

 Issue 1: indexing exhaustivity
 exhaustive: assign a large number of terms
 nonexhaustive

 Issue 2: term specificity
 broad terms (generic)

cannot distinguish relevant from nonrelevant items
 narrow terms (specific)

retrieve relatively fewer items, but most of them are relevant



Parameters of 
retrieval effectiveness
 Recall

 Precision

 Goal
high recall and high precision

P =
Number of relevant items retrieved

Total number of items retrieved

R =
Number of relevant items retrieved

Total number of relevant items in collection
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A Joint Measure

 F-score

 β is a parameter that encode the importance of 
recall and procedure.

 β=1: equal weight
 β>1: precision is more important
 β<1: recall is more important
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Choices of Recall and Precision

 Both recall and precision vary from 0 to 1.
 In principle, the average user wants to achieve 

both high recall and high precision.
 In practice, a compromise must be reached 

because simultaneously optimizing recall and 
precision is not normally achievable.



Choices of Recall and Precision (Continued)

 Particular choices of indexing and search policies 
have produced variations in performance ranging 
from 0.8 precision and 0.2 recall to 0.1 precision 
and 0.8 recall.

 In many circumstance, both the recall and the 
precision varying between 0.5 and 0.6 are more 
satisfactory for the average users.



Term-Frequency Consideration
 Function words

 for example, "and", "or", "of", "but", …
 the frequencies of these words are high in all texts

 Content words
 words that actually relate to document content 
 varying frequencies in the different texts of a 

collect
 indicate term importance for content



A Frequency-Based Indexing Method

 Eliminate common function words from the document 
texts by consulting a special dictionary, or stop list, 
containing a list of high frequency function words.

 Compute the term frequency tfij for all remaining terms Tj
in each document Di, specifying the number of 
occurrences of Tj in Di.

 Choose a threshold frequency T, and assign to each 
document Di all term Tj for which tfij > T.



Discussions

 high-frequency terms
favor recall

 high precision
the ability to distinguish individual documents 
from each other

 high-frequency terms
good for precision when its term frequency is not 
equally high in all documents.



Ranked retrieval
 Thus far, our queries have all been Boolean.

 Documents either match or don’t.
 Good for expert users with precise understanding 

of their needs and the collection.
 Also good for applications: Applications can 

easily consume 1000s of results.
 Not good for the majority of users.
 Most users incapable of writing Boolean queries 

(or they are, but they think it’s too much work).
 Most users don’t want to wade through 1000s of 

results.
 This is particularly true of web search.



Problem with Boolean search: 
feast or famine

 Boolean queries often result in either too few (=0) 
or too many (1000s) results.

 Query 1: “standard user iPhone6 ” → 200,000 
hits

 Query 2: “standard user iPhone6 no SIMcard 
found”: 0 hits

 It takes skill to come up with a query that 
produces a manageable number of hits.

 With a ranked list of documents it does not 
matter how large the retrieved set is.



Scoring as the basis of ranked 
retrieval

 We wish to return in order the documents most 
likely to be useful to the searcher

 How can we rank-order the documents in the 
collection with respect to a query?

 Assign a score – say in [0, 1] – to each document
 This score measures how well document and 

query “match”.



Query-document matching scores

 We need a way of assigning a score to a 
query/document pair

 Let’s start with a one-term query
 If the query term does not occur in the document: 

score should be 0
 The more frequent the query term in the 

document, the higher the score (should be)
 We will look at a number of alternatives for this.



Jaccard coefficient

 Recall set similarity: A commonly used measure 
of overlap of two sets A and B

 jaccard(A,B) = |A ∩ B| / |A ∪ B|
 jaccard(A,A) = 1
 jaccard(A,B) = 0 if A ∩ B = 0
 A and B don’t have to be the same size.
 Always assigns a number between 0 and 1.



Jaccard coefficient: Scoring 
example

 What is the query-document match score that the 
Jaccard coefficient computes for each of the two 
documents below?

 Query: ides of march
 Document 1: caesar died in march
 Document 2: the long march



Issues with Jaccard for scoring

 It doesn’t consider term frequency (how many 
times a term occurs in a document)

 Rare terms in a collection are more informative 
than frequent terms. Jaccard doesn’t consider 
this information

 We need a more sophisticated way of 
normalizing for length

 Later in this lecture, we’ll use 
 . . . instead of |A ∩ B|/|A ∪ B| (Jaccard) for 

length normalization.

| B A|/| B A| 



Recall (Lecture 1): Binary term-
document incidence matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Each document is represented by a binary vector ∈ {0,1}|V|


Shakepeare

				Antony and Cleopatra		Julius Caesar		The Tempest		Hamlet		Othello		Macbeth

		Antony		1		1		0		0		0		1

		Brutus		1		1		0		1		0		0

		Caesar		1		1		0		1		1		1

		Calpurnia		0		1		0		0		0		0

		Cleopatra		1		0		0		0		0		0

		mercy		1		0		1		1		1		1

		worser		1		0		1		1		1		0







Term-document count matrices

 Consider the number of occurrences of a term in 
a document: 
 Each document is a count vector in ℕv: a column 

below 

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1
worser 2 0 1 1 1 0
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		Calpurnia		0		10		0		0		0		0

		Cleopatra		57		0		0		0		0		0

		mercy		2		0		3		5		5		1

		worser		2		0		1		1		1		0







Term-document count matrices

 Consider the number of occurrences of a term in 
a document: 
 Each document is a count vector in ℕv: a column 

below 

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1
worser 2 0 1 1 1 0

Sec. 6.2


Shakepeare
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Bag of words model

 Vector representation doesn’t consider the 
ordering of words in a document

 John is quicker than Mary and Mary is quicker 
than John have the same vectors

 This is called the bag of words model.
 In a sense, this is a step back: The positional 

index was able to distinguish these two 
documents.

 We will look at “recovering” positional information 
later in this course.

 For now: bag of words model



Term frequency tf

 The term frequency tft,d of term t in document d is 
defined as the number of times that t occurs in d.

 We want to use tf when computing query-
document match scores. But how?

 Raw term frequency is not what we want:
 A document with 10 occurrences of the term is 

more relevant than a document with 1 occurrence 
of the term.

 But not 10 times more relevant.
 Relevance does not increase proportionally with 

term frequency. NB: frequency = count in IR



Log-frequency weighting

 The log frequency weight of term t in d is

 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.
 Score for a document-query pair: sum over terms 

t in both q and d:
 score

 The score is 0 if none of the query terms is 
present in the document.
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Document frequency

 Rare terms are more informative than frequent terms
 Recall stop words

 Consider a term in the query that is rare in the 
collection (e.g., arachnocentric)

 A document containing this term is very likely to be 
relevant to the query arachnocentric

 → We want a high weight for rare terms like 
arachnocentric.

Sec. 6.2.1



Document frequency, continued

 Consider a query term that is frequent in the 
collection (e.g., high, increase, line)

 A document containing such a term is more likely 
to be relevant than a document that doesn’t, but 
it’s not a sure indicator of relevance.

 → For frequent terms, we want positive weights 
for words like high, increase, and line, but lower 
weights than for rare terms.

 We will use document frequency (df) to capture 
this in the score.

 df (≤ N) is the number of documents that contain 
the term



idf weight

 dft is the document frequency of t: the number of 
documents that contain t
 df is a measure of the informativeness of t

 We define the idf (inverse document frequency) 
of t by

 We use log N/dft instead of N/dft to “dampen” the 
effect of idf.

tt N/df log  idf 10=

Will turn out the base of the log is immaterial.



idf example, suppose N= 1 million
term dft idft

calpurnia 1 6

animal 100 4

sunday 1,000 3

fly 10,000 2

under 100,000 1

the 1,000,000 0

There is one idf value for each term t in a collection.



Collection vs. Document frequency
 The collection frequency of t is the number of 

occurrences of t in the collection, counting 
multiple occurrences.

 Example:

 Which word is a better search term (and should 
get a higher weight)?

Word Collection frequency Document frequency

insurance 10440 3997

try 10422 8760



tf-idf weighting

 The tf-idf weight of a term is the product of its tf 
weight and its idf weight.

 Best known weighting scheme in information retrieval
 Note: the “-” in tf-idf is a hyphen, not a minus sign!
 Alternative names: tf.idf, tf x idf
 Increases with the number of occurrences within a 

document
 Increases with the rarity of the term in the collection

tdt N
dt

df/log)tflog1(w 10,,
×+=



Binary → count → weight matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88
worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued 
vector of tf-idf weights ∈ R|V|


Shakepeare

				Antony and Cleopatra		Julius Caesar		The Tempest		Hamlet		Othello		Macbeth

		Antony		5.25		3.18		0		0		0		0.35

		Brutus		1.21		6.1		0		1		0		0

		Caesar		8.59		2.54		0		1.51		0.25		0

		Calpurnia		0		1.54		0		0		0		0

		Cleopatra		2.85		0		0		0		0		0

		mercy		1.51		0		1.9		0.12		5.25		0.88

		worser		1.37		0		0.11		4.15		0.25		1.95







Documents as vectors

 So we have a |V|-dimensional vector space
 Terms are axes of the space
 Documents are points or vectors in this space
 Very high-dimensional: hundreds of millions of 

dimensions when you apply this to a web search 
engine

 This is a very sparse vector - most entries are 
zero.



Queries as vectors

 Key idea 1: Do the same for queries: represent 
them as vectors in the space

 Key idea 2: Rank documents according to their 
proximity to the query in this space

 proximity = similarity of vectors
 proximity ≈ inverse of distance
 Recall: We do this because we want to get away 

from the you’re-either-in-or-out Boolean model.
 Instead: rank more relevant documents higher 

than less relevant documents



Formalizing vector space proximity

 First cut: distance between two points
 ( = distance between the end points of the two 

vectors)
 Euclidean distance?
 Euclidean distance is a bad idea . . .
 . . . because Euclidean distance is large for 

vectors of different lengths.



Why distance is a bad idea
The Euclidean 
distance between q
and d2 is large even 
though the
distribution of terms 
in the query q and 
the distribution of
terms in the 
document d2 are
very similar.



Use angle instead of distance

 Thought experiment: take a document d and 
append it to itself. Call this document d′.

 “Semantically” d and d′ have the same content
 The Euclidean distance between the two 

documents can be quite large
 The angle between the two documents is 0, 

corresponding to maximal similarity.

 Key idea: Rank documents according to angle 
with query.



Similarity of document dj w.r.t. query q

 The correlation between vectors dj and q

 | q | does not affect the ranking
 | dj | provides a normalization
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From angles to cosines

 The following two notions are equivalent.
 Rank documents in decreasing order of the angle 

between query and document
 Rank documents in increasing order  of 

cosine(query,document)
 Cosine is a monotonically decreasing function for 

the interval [0o, 180o]



Length normalization

 A vector can be (length-) normalized by dividing 
each of its components by its length – for this we 
use the L2 norm:

 Dividing a vector by its L2 norm makes it a unit 
(length) vector

 Effect on the two documents d and d′ (d 
appended to itself) from earlier slide: they have 
identical vectors after length-normalization.
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cosine(query,document)
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Dot product Unit vectors

qi is the tf-idf weight of term i in the query
di is the tf-idf weight of term i in the document
cos(q,d) is the cosine similarity of q and d … or,
equivalently, the cosine of the angle between q and d.



Cosine similarity amongst 3 documents

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

wuthering 0 0 38

How similar are
the novels
SaS: Sense and
Sensibility
PaP: Pride and
Prejudice, and
WH: Wuthering
Heights?

Term frequencies (counts)



3 documents example contd.
Log frequency weighting

term SaS PaP WH
affection 3.06 2.76 2.30
jealous 2.00 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

After normalization

term SaS PaP WH
affection 0.789 0.832 0.524
jealous 0.515 0.555 0.465
gossip 0.335 0 0.405
wuthering 0 0 0.588

cos(SaS,PaP) ≈
0.789 ∗ 0.832 + 0.515 ∗ 0.555 + 0.335 ∗ 0.0 + 0.0 ∗ 0.0
≈ 0.94
cos(SaS,WH) ≈ 0.79
cos(PaP,WH) ≈ 0.69

Why do we have cos(SaS,PaP) > cos(SAS,WH)?



Computing cosine scores



tf-idf weighting has many variants

Columns headed ‘n’ are acronyms for weight schemes.

Why is the base of the log in idf immaterial?



Weighting may differ in queries vs 
documents

 Many search engines allow for different 
weightings for queries vs documents

 To denote the combination in use in an engine, 
we use the notation qqq.ddd with the acronyms 
from the previous table

 Example: ltn.ltc means:
 Query: logarithmic tf (l in leftmost column), idf (t 

in second column), no normalization …
 Document logarithmic tf, no idf and cosine 

normalization
Is this a bad idea?



tf-idf example: ltn.lnc

Term Query Document Prod
tf-raw tf-wt df idf wt tf-raw tf-wt wt n’lized

auto 0 0 5000 2.3 0 1 1 1 0.52 0
best 1 1 50000 1.3 1.3 0 0 0 0 0
car 1 1 10000 2.0 2.0 1 1 1 0.52 1.04
insurance 1 1 1000 3.0 3.0 2 1.3 1 0.68 2.04

Document: car insurance auto insurance
Query: best car insurance

Exercise: what is N, the number of docs?

Score = 0+0+1.04+2.04 = 3.08

Doc length = 92.11101 2222 ≈+++



Summary – vector space ranking

 Represent the query as a weighted tf-idf vector
 Represent each document as a weighted tf-idf vector
 Compute the cosine similarity score for the query 

vector and each document vector
 Rank documents with respect to the query by score
 Return the top K (e.g., K = 10) to the user



Vector Representation of Text

Word Embedding Technique 
(word2vec)



Word to vector (word2vector)



Problem?



Example



Word Representations
Traditional Method  - Bag of Words Model Word Embeddings

• Uses one hot encoding

• Each word in the vocabulary is 
represented by one bit position in a 
HUGE vector.

• For example, if we have a vocabulary 
of 10000 words, and “Hello” is the 4th

word in the dictionary, it would be 
represented by:  0 0 0 1 0 0  . . . . . . . 0 
0 0 0 

• Context information is not utilized

• Stores each word in as a point in 
space, where it is represented by a 
vector of fixed number of dimensions 
(generally 300)

• Unsupervised, built just by reading 
huge corpus

• For example, “Hello” might be 
represented as :  
[0.4, -0.11, 0.55, 0.3 . . . 0.1, 0.02]

• Dimensions are basically projections 
along different axes, more of a 
mathematical concept.  



Architecture



To compare pieces of text
 We need effective representation of 

 Words
 Sentences
 Text

 Approach 1: Use existing thesauri or ontologies like 
WordNet and Snomed CT (for medical). 
Drawbacks:
 Manual
 Not context specific

 Approach 2: Use co-occurrences for word similarity. 
Drawbacks:
 Quadratic space needed
 Relative position and order of words not considered



Approach 3: low dimensional vectors
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Example of Approach 3: low dimensional 
vectors
 An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence [Rohde et al. 2005]
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Problems with SVD

 Computational cost scales quadratically for n x m 
matrix: O(mn2) flops (when n<m)

 Hard to incorporate new words or documents
 Does not consider order of words
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word2vec  approach to represent the 
meaning of word

 Represent each word with a low-dimensional 
vector

 Word similarity = vector similarity
 Key idea: Predict surrounding words of every 

word
 Faster and can easily incorporate a new 

sentence/document or add a word to the 
vocabulary
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Represent the meaning of word –
word2vec

 2 basic neural network models:
 Continuous Bag of Word (CBOW): use a window of 

word to predict the middle word
 Skip-gram (SG): use a word to predict the 

surrounding ones in window. 
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Word2vec – Continuous Bag of 
Word

 E.g. “The cat sat on floor”
 Window size = 2
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0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2
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… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

Contain word’s vectors

We can consider either W or W’ as the word’s 
representation. Or even take the average.

簡報者
簡報註解
W contains input word vectors.W’ contains output word vectors.We can consider either W or W’ as the word’s representation. Or even take the average.



Some interesting results
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Word analogies
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Represent the meaning of sentence/text

 Simple approach: take avg of the word2vecs of its 
words

 Another approach: Paragraph vector (2014, Quoc 
Le, Mikolov)
 Extend word2vec to text level
 Also two models: add paragraph vector as the 

input
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Applications

 Word Similarity:  Edit Distance, WordNet, Porter's 
Stemmer, Lemmatization using dictionaries

 Search, e.g., query expansion
 Machine Translation 
 Part-of-Speech and Named Entity Recognition
 Relation extraction
 Sentiment analysis
 Semantic Analysis of Documents 
 Clustering
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