Lecture 4 IR Modeling

Traditional IR Models

- Content Analysis
 - Statistical Characteristics of Text
 Collections
 - Zipf distribution
 - Statistical dependence
 - Term Vector Representations
- Inverted Indexes
- Ranking

A Taxonomy of IR Models

- Boolean Model(Set Theory)
 - Extended Boolean model
 - Fuzzy model
- Vector Model(Algebraic Theory)
 - Generalized vector model
 - Latent semantic index
 - Neural networks
- Probabilistic Model
 - Inference network
 - Belief network

Basic Concepts of Classic IR

- index terms (usually nouns): index and summarize
- weight of index terms
- Definition
 - $K=\{k_1, ..., k_t\}$: a set of all index terms
 - $w_{i,j}$: a weight of an index term k_i of a document d_i
 - $-\overrightarrow{d_j}=(w_{1,j}, w_{2,j}, ..., w_{t,j})$: an *index term vector* for the document d_i
 - $g_i(\vec{d}_j) = w_{i,j}$

 $w_{i,j}$ associated with (k_i,d_j) tells us nothing about $w_{i+1,j}$ associated with (k_{i+1},d_j)

- assumption
 - index term weights are *mutually independent*

The terms *computer* and *network* in the area of computer networks

Boolean Model

- The index term weight variables are all binary, i.e., $w_{i,j} \in \{0,1\}$
- A query q is a Boolean expression (and, or, not)
- \vec{q}_{dnf} : the disjunctive normal form for q
- \vec{q}_{cc} : conjunctive components of \vec{q}_{dnf}
- $sim(d_j,q)$: similarity of d_j to q
 - 1: if $\exists \vec{q}_{cc} \mid (\vec{q}_{cc} \in \vec{q}_{dnf} \land (\forall k_i, g_i(\vec{d}_j) = g_i(\vec{q}_{cc}))$
 - 0: otherwise

dj is relevant to q

Boolean Model (Continued)

- advantage: simple
- disadvantage
 - binary decision (relevant or non-relevant)
 without grading scale
 - exact match (no partial match)
 - e.g., $d_j = (0,1,0)$ is non-relevant to $q = (k_a \land (k_b \lor \neg k_c)$
 - retrieve too few or too many documents

Basic Vector Space Model

- Term vector representation of documents $D_i=(a_{i1}, a_{i2}, ..., a_{it})$ queries $Q_j=(q_{j1}, q_{j2}, ..., q_{jt})$
- t distinct terms are used to characterize content.
- Each term is identified with a term vector T.
- t vectors are linearly independent.
- Any vector is represented as a linear combination of the *t* term vectors.
- The rth document D_r can be represented as a document vector, written as

$$D_r = \sum_{i=1}^l a_{ri} T_i$$

Document Collection

- A collection of *n* documents can be represented in the vector space model by a term-document matrix.
- An entry in the matrix corresponds to the "weight" of a term in the document; zero means the term has no significance in the document or it simply doesn't exist in the document.

Documents as vectors

- So we have a |V|-dimensional vector space
- Terms are axes of the space
- Documents are points or vectors in this space
- Very high-dimensional: hundreds of millions of dimensions when you apply this to a web search engine
- This is a very sparse vector most entries are zero. $d_i = (w_{1i}, w_{2i}, ..., w_{ti})$

Queries as vectors

- <u>Key idea 1:</u> Do the same for queries: represent them as vectors in the space
- <u>Key idea 2:</u> Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors
- proximity \approx inverse of distance
- Recall: We do this because we want to get away from the you're-either-in-or-out Boolean model.
- Instead: rank more relevant documents higher than less relevant documents

Graphic Representation

Example:

$$D_1 = 2T_1 + 3T_2 + 5T_3$$

$$D_2 = 3T_1 + 7T_2 + T_3$$

$$Q = 0T_1 + 0T_2 + 2T_3$$

Rank Retrieval over Vector Space

- Retrieval based on *similarity* between query and documents.
- Output documents are ranked according to similarity to query.

Graphic Representation

 T_3

Example:

$$D_1 = 2T_1 + 3T_2 + 5T_3$$

$$D_2 = 3T_1 + 7T_2 + T_3$$

$$Q = 0T_1 + 0T_2 + 2T_3$$

 $D_1 = 2T_1 + 3T_2 + 5T_3$

 $D_2 = 3T_1 + 7T_2 + T_3$

 Γ_2

<u>23</u>

- Is D_1 or D_2 more similar to Q?
- How to measure the degree of similarity? Distance? Angle? Projection?

Similarity Measure

• A similarity measure is a function that computes the *degree of similarity* between two vectors.

- Using a similarity measure between the query and each document:
 - It is possible to rank the retrieved documents in the order of presumed relevance.
 - It is possible to enforce a certain threshold so that the size of the retrieved set can be controlled.

Similarity Measure

measure by product of two vectors

$$x \cdot y = |x| |y| \cos \alpha$$

document-query similarity

document vector:

term vector:

$$D_r = \sum_{i=1}^t a_{ri} T_i$$
 $Q_s = \sum_{j=1}^t a_{ri} q_{sj} T_i \cdot T_j$

 how to determine the vector components and term correlations?

Similarity Measure (Continued)

vector components

$$T_1$$
 T_2 T_3 T_t

$$\begin{array}{c|ccccc}
D_1 & a_{11} & a_{12} & \cdots & a_{1t} \\
D_2 & a_{21} & a_{22} & \cdots & a_{2t} \\
\vdots & \vdots & \vdots & \vdots \\
D_n & a_{n1} & a_{n2} & \cdots & a_{nt}
\end{array}$$

Similarity Measure (Continued)

• term correlations T_i • T_j are not available assumption: term vectors are orthogonal

$$T_i \cdot T_j = 0 \ (i \neq j) \quad T_i \cdot T_j = 1 \ (i = j)$$

• Assume that terms are uncorrelated.

$$sim(D_r,Q_s) = \sum_{i,j=1}^t a_{ri}q_{sj}$$

• Similarity measurement between documents

$$sim(D_r, D_s) = \sum_{i,j=1}^t a_{ri} a_{sj}$$

Simple query-document similarity computation

•
$$D_1 = 2T_1 + 3T_2 + 5T_3$$
 $D_2 = 3T_1 + 7T_2 + 1T_3$
 $Q = 0T_1 + 0T_2 + 2T_3$

- similarity computations for uncorrelated terms $sim(D_1,Q)=2 \cdot 0+3 \cdot 0+5 \cdot 2=10$ $sim(D_2,Q)=3 \cdot 0+7 \cdot 0+1 \cdot 2=2$
- D_1 is preferred

Simple query-document similarity computation (Continued)

• similarity computations for correlated terms

$$sim(D_1,Q) = (2T_1 + 3T_2 + 5T_3) \cdot (0T_1 + 0T_2 + 2T_3)$$

 $= 4T_1 \cdot T_3 + 6T_2 \cdot T_3 + 10T_3 \cdot T_3$
 $= -6*0.2 + 10*1 = 8.8$
 $sim(D_2,Q) = (3T_1 + 7T_2 + 1T_3) \cdot (0T_1 + 0T_2 + 2T_3)$
 $= 6T_1 \cdot T_3 + 14T_2 \cdot T_3 + 2T_3 \cdot T_3$
 $= -14*0.2 + 2*1 = -0.8$

• D₁ is preferred

Vector Model

- w_{i,j}: a positive, non-binary weight for (k_i,d_j)
- $w_{i,q}$: a positive, non-binary weight for (k_i,q)
- $\vec{q}=(w_{1,q}, w_{2,q}, ..., w_{t,q})$: a query vector, where t is the total number of index terms in the system
- $d_j = (w_{1,j}, w_{2,j}, ..., w_{t,j})$: a document vector

Similarity of document d_j w.r.t. query q

• The correlation between vectors d_i and \overrightarrow{q}

$$sim(d_{j},q) = \frac{\overrightarrow{d}_{j} \bullet \overrightarrow{q}}{|\overrightarrow{d}_{j}| \times |\overrightarrow{q}|} \quad cos(\overrightarrow{d}_{j},\overrightarrow{q})$$

$$= \frac{\sum_{i=1}^{t} w_{i,j} \times w_{i,q}}{\sqrt{\sum_{i=1}^{t} w_{i,j}^{2}} \times \sqrt{\sum_{j=1}^{t} w_{i,q}^{2}}} \qquad q$$

- $|\vec{q}|$ does not affect the ranking
- $|\overrightarrow{d_j}|$ provides a normalization

document ranking

- Similarity (i.e., $sim(q, d_i)$) between 0 and 1.
- Retrieve the documents with a degree of similarity above a predefined threshold (allow partial matching)

Term weighting techniques

- IR problem vs Classification problem:
 - user query: a specification of a set A of objects
 - classification problem: determine which documents are in the set A (*relevant*), which ones are not (*non-relevant*)
 - intra-cluster similarity
 - the features better describe the objects in the set A
 - tf factor in vector model
 the raw frequency of a term k_i inside a document d_i
 - inter-cluster similarity
 - the features better distinguish the the objects in the set A from the remaining objects in the collection C
 - idf factor (inverse document frequency) in vector model the inverse of the frequency of a term k_i among the documents in the collection

Definition of tf

- N: total number of documents in the system
- n_i : the number of documents in which the index term k_i appears
- freq $_{i,j}$: the raw frequency of term k_i in the document d_i
- $f_{i,j}$: the *normalized frequency* of term k_i in document d_j $\int_{f_i}^{f_i} f_i dt = \int_{f_i}^{f_i} f_i$

 $f_{i,j} = \frac{freq_{i,j}}{\max_{l} freq_{l,j}}$ (0~1) Term t_l has maximum frequency in the document d_j

Definition of *idf* and *tf-idf* scheme

• idf_i: inverse document frequency for k_i

$$idf_i = \log \frac{N}{n_i}$$

• w_{i,j}: term-weighting by *tf-idf* scheme

$$w_{i,j} = f_{i,j} \times \log \frac{N}{n_i}$$

• query term weight (Salton and Buckley)

$$w_{i,q} = (0.5 + \frac{0.5 freq_{i,q}}{\max_{l} freq_{i,q}}) \times \log \frac{N}{n_i}$$

freq_{i,q}: the raw frequency of the term k_i in q

Analysis of vector model

advantages

- its term-weighting scheme improves retrieval performance
- its partial matching strategy allows retrieval of documents that approximate the query conditions
- its cosine ranking formula sorts the documents according to their degree of similarity to the query

disadvantages

indexed terms are assumed to be mutually independently

Documents in 3D Space

Assumption: Documents that are "close together" in space are similar in meaning.

Vector Space Model

- Documents are represented as vectors in term space
 - Terms are usually stems
 - Documents represented by binary vectors of terms
- Queries represented the same as documents
- Query and Document weights are based on length and direction of their vector
- A vector distance measure between the query and documents is used to rank retrieved documents

Documents in Vector Space

Vector Space Documents and Queries

docs	<i>t</i> 1	t2	t3	RSV=Q.Di
D1	1	0	1	4
D2	1	0	0	1
D3	0	1	1	5
D4	1	0	0	1
D5	1	1	1	6
D6	1	1	0	3
D7	0	1	0	2
D8	0	1	0	2
D9	0	0	1	3
D10	0	1	1	5
D11	0	0	1	3
Q	1	2	3	
	q1	q2	<i>q3</i>	

Similarity Measures

$$|Q \cap D|$$

Simple matching (coordination level match)

$$2\frac{|Q||D|}{|Q|+|D|}$$

Dice's Coefficient

$$\frac{|Q \cap D|}{|Q \cup D|}$$

Jaccard's Coefficient

$$\frac{|Q||D|}{|Q|^{\frac{1}{2}} \times |D|^{\frac{1}{2}}}$$

Cosine Coefficient

$$\frac{|Q \cap D|}{\min(|Q|, |D|)}$$

Overlap Coefficient

Vector Space with Term Weights and Cosine Matching

$$D_{i} = (d_{i1}, w_{di1}; d_{i2}, w_{di2}; ...; d_{it}, w_{dit})$$

$$Q = (q_{i1}, w_{qi1}; q_{i2}, w_{qi2}; ...; q_{it}, w_{qit})$$

$$sim(Q, D_{i}) = \frac{\sum_{j=1}^{t} w_{q_{j}} w_{d_{ij}}}{\sqrt{\sum_{j=1}^{t} (w_{q_{j}})^{2} \sum_{j=1}^{t} (w_{d_{ij}})^{2}}}$$

$$sim(Q, D2) = \frac{(0.4 \cdot 0.2) + (0.8 \cdot 0.7)}{\sqrt{[(0.4)^{2} + (0.8)^{2}] \cdot [(0.2)^{2} + (0.7)^{2}]}}$$

$$= \frac{0.64}{\sqrt{0.42}} = 0.98$$

$$sim(Q, D_{1}) = \frac{.56}{\sqrt{0.58}} = 0.74$$

Probabilistic Model

- Given a query, there is an ideal answer set
 - a set of documents which contains exactly the relevant documents and no other
- query process
 - a process of specifying the properties of an ideal answer set
- problem: what are the properties?

Probabilistic Principle

- Given a *user query* q and a *document* d_j in the collection, the probabilistic model estimates the probability that user will find d_i relevant
- assumptions
 - The probability of relevance depends on query and document representations only
 - There is a subset of all documents which the user prefers as the answer set for the query q
- Given a query, the probabilistic model assigns to each document dj a measure of its similarity to the query $P(d_j relevant to q)$

$$P(d_i nonrelevant - to q)$$

Probabilistic Principle

- $w_{i,j} \in \{0,1\}$, $w_{i,q} \in \{0,1\}$: the index term weight variables are all binary non-relevant
- q: a query which is a subset of index terms
- R: the set of documents known to be *relevant*
- \overline{R} : the set of documents known to be *non-relevant*
- $P(R|d_j)$: the probability that the document d_j is *relevant* to the query q
- $P(\overline{R}|\overrightarrow{dj})$: the probability that d_j is non-relevant to q

Similarity

• sim(d_j,q): the similarity of the document d_j to the query q

$$sim(d_{j},q) = \frac{P(R | \overline{d_{j}})}{P(\overline{R} | \overline{d_{j}})}$$
 (by definition)
$$sim(d_{j},q) = \frac{P(\overline{d_{j}} | R) \times P(R)}{P(\overline{d_{j}} | \overline{R}) \times P(\overline{R})}$$
 (Bayes' rule)
$$sim(d_{j},q) \approx \frac{P(\overline{d_{j}} | R)}{P(\overline{d_{j}} | \overline{R})}$$
 (P(R) and P(R) are the same for all documents)

 $P(d_j | R)$: the probability of randomly selecting the document d_j from the set of R of relevant documents P(R): the probability that a document randomly selected from the entire collection is relevant

$$sim(d_j,q) \approx \frac{P(\overrightarrow{d_j} \mid R)}{P(\overrightarrow{d_j} \mid \overline{R})}$$

$$= \log \frac{\prod\limits_{i=1}^{t} (P(k_i \mid R))^{g_i(\overline{d_j})} \times (P(\overline{k}_i \mid R))^{1-g_i(\overline{d_j})}}{\prod\limits_{i=1}^{t} (P(k_i \mid \overline{R}))^{g_i(\overline{d_j})} \times (P(\overline{k}_i \mid \overline{R}))^{1-g_i(\overline{d_j})}}$$

$$P(k_i|R)$$
: the probability that the index term k_i is present in a document randomly selected from the set R .

 $P(\overline{k}_i|R)$: the probability that the index term k_i is not present in a document randomly selected from the set R.

$$= \sum_{i=1}^{t} \log \frac{\left(P(k_i \mid R)\right)^{g_i(\overline{d_j})} \times \left(P(\overline{k_i} \mid R)\right)^{1-g_i(\overline{d_j})}}{\left(P(k_i \mid \overline{R})\right)^{g_i(\overline{d_j})} \times \left(P(\overline{k_i} \mid \overline{R})\right)^{1-g_i(\overline{d_j})}}$$

independence assumption of index terms

$$= \sum_{i=1}^{t} \log \frac{\left(P(k_i \mid R) \times P(\overline{k}_i \mid \overline{R})\right)^{g_i(d_j)} \times \left(P(\overline{k}_i \mid R)\right)}{\left(P(k_i \mid \overline{R}) \times P(\overline{k}_i \mid R)\right)^{g_i(\overline{d_j})} \times \left(P(\overline{k}_i \mid \overline{R})\right)}$$

$$= \sum_{i=1}^{t} g_{i}(\overrightarrow{d_{j}}) \times \log \frac{P(k_{i} \mid R) \times P(\overline{k}_{i} \mid \overline{R})}{P(k_{i} \mid \overline{R}) \times P(\overline{k}_{i} \mid R)} + \sum_{i=1}^{t} \frac{P(\overline{k}_{i} \mid R)}{P(\overline{k}_{i} \mid \overline{R})}$$

$$= \sum_{i=1}^{t} g_i(\overrightarrow{d_j}) \times \log \frac{P(k_i \mid R) \times (1 - P(k_i \mid \overline{R}))}{P(k_i \mid \overline{R}) \times (1 - P(k_i \mid R))} + \sum_{i=1}^{t} \frac{P(\overline{k}_i \mid R)}{P(\overline{k}_i \mid \overline{R})}$$

$$\begin{aligned} ∼(d_{j},q) \approx \frac{P(\overrightarrow{d_{j}} \mid R)}{P(\overrightarrow{d_{j}} \mid \overline{R})} \\ &= \sum_{i=1}^{t} g_{i}(\overrightarrow{d_{j}}) \times \log \frac{P(k_{i} \mid R) \times (1 - P(k_{i} \mid \overline{R}))}{P(k_{i} \mid \overline{R}) \times (1 - P(k_{i} \mid R))} + \sum_{i=1}^{t} \frac{P(\overline{k}_{i} \mid R)}{P(\overline{k}_{i} \mid \overline{R})} \\ &= \sum_{i=1}^{t} g_{i}(\overrightarrow{d_{j}}) \times (\log \frac{P(k_{i} \mid R)}{(1 - P(k_{i} \mid R))}) + \log \frac{(1 - P(k_{i} \mid \overline{R}))}{P(k_{i} \mid \overline{R})}) + \sum_{i=1}^{t} \frac{P(\overline{k}_{i} \mid R)}{P(\overline{k}_{i} \mid \overline{R})} \\ &\approx \sum_{i=1}^{t} g_{i}(\overrightarrow{d_{j}}) \times (\log \frac{P(k_{i} \mid R)}{(1 - P(k_{i} \mid R))}) + \log \frac{(1 - P(k_{i} \mid \overline{R}))}{P(k_{i} \mid \overline{R})}) \\ \end{aligned}$$

Problem: where is the set R?

Initial guess

• $P(k_i|R)$ is constant for all index terms k_i .

$$p(k_i \mid R) = 0.5$$

• The distribution of index terms among the non-relevant documents can be approximated by the distribution of index terms among all the documents in the collection.

$$P(k_i \mid \overline{R}) = \frac{n_i}{N}$$
(assume N>>|R|, N\overline{\pi}|R|)

Initial ranking

- V: a subset of the documents initially retrieved and ranked by the probabilistic model (*top r documents*)
- V_i: subset of V composed of documents which contain the index term k_i
- Approximate $P(k_i|R)$ by the distribution of the index term k_i among the documents retrieved so far. $P(k_i|R) = \frac{V_i}{P(k_i|R)} = \frac{V_i}{P(k_i|R)}$
- far. $P(k_i|R) = \frac{V_i}{V}$ Approximate $P(k_i|R)$ by considering that all the non-retrieved documents are not relevant.

$$P(k_i \mid \overline{R}) = \frac{n_i - V_i}{N - V}$$

Small values of V and V_i

$$P(k_i \mid R) = \frac{V_i}{V}$$
 a problem when V=1 and V_i=0
$$P(k_i \mid \overline{R}) = \frac{n_i - V_i}{N - V}$$

• alternative 1

$$P(k_i \mid R) = \frac{V_i + 0.5}{V + 1}$$
$$P(k_i \mid \overline{R}) = \frac{n_i - V_i + 0.5}{N - V + 1}$$

• alternative 2

$$P(k_i \mid R) = \frac{V_i + \frac{n_i}{N}}{V+1}$$

$$P(k_i \mid \overline{R}) = \frac{n_i - V_i + \frac{n_i}{N}}{N-V+1}$$

Analysis of Probabilistic Model

advantage

 documents are ranked in decreasing order of their probability of being relevant

disadvantages

- the need to guess the initial separation of documents into relevant and non-relevant sets
- do not consider the frequency with which an index terms occurs inside a document
- the independence assumption for index terms

Comparison of classic models

- Boolean model: the weakest classic model
- Vector model is expected to outperform the probabilistic model with general collections (Salton and Buckley)

Alternative Set Theoretic Models -Fuzzy Set Model

Model

- a query term: a fuzzy set
- a document: degree of membership in this set
- membership function
 - Associate membership function with the elements of the class

documents

- 0: no membership in the set
- 1: fully membership
- 0~1: marginal elements of the set

Fuzzy Set Theory

a class

• A fuzzy subset A of a universe of discourse U is characterized by a membership function μ_A : U \rightarrow [0,1] which associates with each element u of U a number μ_A (u) in the interval [0,1]

a document

- complement: $\mu_{\overline{A}}(u) = 1 \mu_A(u)$
- union: $\mu_{A \cup B}(u) = \max(\mu_A(u), \mu_B(u))$
- intersection: $\mu_{A \cap B}(u) = \min(\mu_A(u), \mu_B(u))$

Examples

- Assume $U=\{k_1, k_2, k_3, k_4, k_5, k_6\}$
- Let A and B be $\{k_1, k_2, k_3\}$ and $\{k_2, k_3, k_4\}$, respectively.
- Assume $\mu_A = \{k_1/0.8, k_2/0.7, k_3/0.6, k_4/0, k_5/0, k_6/0\}$ and $\mu_B = \{k_1/0, k_2/0.6, k_3/0.8, k_4/0.9, k_5/0, k_6/0\}$
- $\mu_{\overline{A}}(u) = 1 \mu_{A}(u) = \{k_1:0.2, k_2:0.3, k_3:0.4, k_4:1, k_5:1, k_6:1\}$
- $\mu_{A \cup B}(u) = \max(\mu_A(u), \mu_B(u)) = \{k_1:0.8, k_2:0.7, k_3:0.8, k_4:9, k_5:0, k_6:0\}$
- $\mu_{A \cap B}(u) = \min(\mu_A(u), \mu_B(u)) = \{k_1:0, k_2:0.6, k_3:0.6, k_4:0, k_5:0, k_6:0\}$

Fuzzy Information Retrieval

basic idea

- Expand the set of index terms in the query with related terms (from the thesaurus) such that additional relevant documents can be retrieved
- A thesaurus can be constructed by defining a term-term correlation matrix c whose rows and columns are associated to the index terms in the document collection

keyword correlation matrix

Fuzzy Information Retrieval

(Continued)

• normalized correlation factor $c_{i,l}$ between two terms k_i and k_l (0~1)

$$c_{i,l} = \frac{n_{i,l}}{n_i + n_l - n_{i,l}} \text{ where } \begin{cases} n_i \text{ is # of documents containing term } k_i \\ n_l \text{ is # of documents containing term } k_l \\ n_{i,l} \text{ is # of documents containing } k_i \text{ and } k_l \end{cases}$$

• In the fuzzy set associated to each index term k_i , a document d_j has a degree of membership $\mu_{i,i}$

$$\mu_{i,j} = 1 - \prod_{k_l \in d_j} (1 - c_{i,l})$$

Example

Query
$$q=k_a \wedge (k_b \vee \neg k_c)$$

disjunctive normal form \overrightarrow{q}_{dnf} =(1,1,1) \vee (1,1,0) \vee (1,0,0)

- (1) the degree of membership in a disjunctive fuzzy set is computed using an algebraic sum (instead of max function) more smoothly

 (2) the degree of membership in a conjunctive fuzzy set is computed.
- (2) the degree of membership in a conjunctive fuzzy set is computed using an algebraic product (*instead of min function*)

$$\mu_{q,j} = \mu_{cc1+cc2+cc3,j}$$

$$= 1 - \prod_{i=1}^{3} (1 - \mu_{cc_i,j})$$

$$= 1 - (1 - \mu_{a,j}\mu_{b,j}\mu_{c,j}) \times (1 - \mu_{a,j}\mu_{b,j}(1 - \mu_{c,j})) \times (1 - \mu_{a,j}(1 - \mu_{b,j})(1 - \mu_{c,j}))$$
Recall $\mu_{\overline{A}}(u) = 1 - \mu_{A}(u)$

$$= 1 - (1 - \mu_{a,j}\mu_{b,j}\mu_{c,j}) \times (1 - \mu_{a,j}\mu_{b,j}(1 - \mu_{c,j})) \times (1 - \mu_{a,j}(1 - \mu_{b,j})(1 - \mu_{c,j}))$$

Fuzzy Set Model Summary

- Matching degree (the matching of a "document" to the "query")
- Membership μ_{A}

```
OR: \mu_{A \cup B} = \max(\mu_A, \mu_B)
```

AND:
$$\mu_{A \wedge B} = \min(\mu_A, \mu_B)$$

NOT:
$$\mu_{\bar{A}} = 1 - \mu_{A}$$

- Binary decision→grade membership
- term-term correlation
- Fuzzy Set operators (min/max --> fuzzy operator)
- "index-term" set ← → "related-term" (query)

"thesaurus" 同義字字典

Extended Boolean Model

- (different from Boolean) Partial matching & terms weighting
- Boolean query $_{e.g.}$ $q{=}$ K_1 Λ K_2 $D_1 \supset K_1 \ , \ D_2 \supset K_2 \ , D_3 \supset K_3 \ , \ K_4 \ \text{query results are the same}$
- Using "Similarity" to represent "matching degree" ⇒ Sim(q,dj)
 - example: distance, algebraic mean,...

Alternative Algebraic Model: Generalized Vector Space Model

- independence of index terms
 - $-\overline{k_i}$: a vector associated with the index term k_i
 - the set of vectors $\{k_1, k_2, ..., k_t\}$ is linearly independent
 - orthogonal: $\vec{k}_i \bullet \vec{k}_j = 0$ for $i \neq j$
 - The index term vectors are assumed linearly independent but are not pairwise orthogonal in generalized vector space model
 - The index term vectors, which are not seen as the basis of the space, are composed of *smaller components* derived from the particular collection.

- $\{k_1, k_2, ..., k_t\}$: index terms in a collection
- $w_{i,j}$: binary weights associated with the term-document pair $\{k_i, d_i\}$
- The patterns of term *co-occurrence* (inside documents) can be represented by a set of 2^t *minterms*

 m_1 =(0, 0, ..., 0): point to documents containing none of index terms m_2 =(1, 0, ..., 0): point to documents containing the index term k_1 only m_3 =(0,1,...,0): point to documents containing the index term k_2 only m_4 =(1,1,...,0): point to documents containing the index terms k_1 and k_2

. . .

- $m_2^{t}=(1, 1, ..., 1)$: point to documents containing all the index terms
 - $g_i(m_j)$: return the weight $\{0,1\}$ of the index term k_i in the minterm m_i $(1 \le i \le t)$

(Continued) $m_1 = (1,0,...,0,0)$ $\vec{m}_2 = (0,1,...,0,0)$ $m_i \bullet m_i = 0 \text{ for } i \neq j$ (the set of m_i are pairwise orthogonal) • $m_i = (0,0,...,0,1)$ (the set of m_i are pairwise orthogone)
• $m_i (2^t$ -tuple vector) is associated with minterm m_i

- (t-tuple vector)
- e.g., $\overrightarrow{m_4}$ is associated with m_4 containing k_1 and k_2 , and no others
- co-occurrence of index terms inside documents: dependencies among index terms

(Continued)

• Determine the index vector k_i associated with the index term k_i

$$\vec{k}_{i} = \frac{\sum_{\forall r,gi(mr)=1} c_{i,r} \vec{m}_{r}}{\sqrt{\sum_{\forall r,gi(mr)=1} c_{i,r}^{2}}}$$

Collect all the vectors \mathbf{m}_r in which the index term \mathbf{k}_i is in state 1.

$$c_{i,r} = \sum_{\substack{d_j | g_l(\vec{d}_j) = g_l(m_r) \text{ for all } l}} w_{i,j}$$

Sum up $w_{i,j}$ associated with the index term k_i and document d_j whose term occurrence pattern coincides with minterm m_r

(Continued)

• $\vec{k}_i \cdot \vec{k}_j$ quantifies a degree of correlation between k_i and k_i

$$\vec{k}_{i} \bullet \vec{k}_{j} = \sum_{r} c_{i,r} \times c_{j,r}$$

$$\forall r | g_{i}(m_{r}) = 1 \land g_{j}(m_{r}) = 1$$

standard cosine similarity is adopted

$$\vec{d}_{j} = \sum_{\forall i} w_{i,j} \vec{k}_{i} \quad \vec{q} = \sum_{\forall i} w_{i,q} \vec{k}_{i}$$

$$\vec{k}_{i} = \frac{\sum_{\forall r,g} \vec{i} (mr) = 1} c_{i,r} m_{r}}{\sqrt{\sum_{\forall r,g} \vec{i} (mr) = 1} c_{i,r}^{2}}}$$

Latent Semantic Indexing Model

- representation of documents and queries by index terms
 - problem 1: many unrelated documents might be included in the answer set
 - problem 2: relevant documents which are not indexed by any of the query keywords are not retrieved
- possible solution: concept matching instead of index term matching
 - application in cross-language information retrieval

Basic idea

- Map each document and query vector into a lower dimensional space which is associated with concepts
- Retrieval in the reduced space may be superior to retrieval in the space of index terms

Definition

- t: the number of index terms in the collection
- N: the total number of documents
- $M=(M_{ij})$: a term-document association matrix with t rows and N columns
- M_{ij} : a weight $w_{i,j}$ associated with the term-document pair $[k_i, d_i]$ (e.g., using tf-idf)

Singular Value Decomposition

$$A \in \mathbb{R}^{n \times n}$$

$$(1) A = A^T$$

$$\exists Q \in R^{n \times n}$$
 st $QQ^T = I$ $\{Q^TQ = I\}$ orthogonal sin gular value decomposit ion:

$$A = QDQ^{T}$$
 $\{A^{T} = (QDQ^{T})^{T} = (Q^{T})^{T}D^{T}Q^{T} = QDQ^{T} = A\}$

diagonal matrix

$$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n \geq 0$$

documents

Singular value decomposition of the term x document matrix, X. Where:

 T_0 has orthogonal, unit-length columns $(T_0, T_0 = 1)$ D_0 has orthogonal, unit-length columns $(D_0, D_0 = 1)$ S_0 is the diagonal matrix of singular values t is the number of rows of X d is the number of columns of X m is the rank of X (\leq min(t,d))

documents χ̈́. T D: terms $\mathbf{k} \times \mathbf{k}$ k x d 1×0 $t \times k$ \hat{X}

Т

S

D:

Reduced singular value decomposition of the term x document matrix, X. Where:

T has orthogonal, unit-length columns (T * T = I)

D has orthogonal, unit-length columns (D' D = I)

S is the diagonal matrix of singular values

t is the number of rows of X

d is the number of columns of X

m is the rank of $X \le \min\{t,d\}$

k is the chosen number of dimensions in the reduced model ($k \le m$)

Technical Memo Example

Titles	
c1:	Human machine interface for Lab ABC computer applications
c2:	A survey of user opinion of computer system response time
c3:	The EPS user interface management system
64)	System and human system engineering testing of EPS
c5:	Relation of user-perceived response time to error measurement
m1:	The generation of random, binary, unordered trees
m2:	The intersection graph of paths in trees
m3:	Graph minors IV: Widths of trees and well-quasi-ordering
m4:	Graph minors: A survey

Terms	Documents								
	el	c2	c 3	¢4	c5	m l	m2	m3	m4
human	1	0	0	1	0	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	- 1	1	2	0	0	0	0	0
response	0	- 1	0	0	1	0	0	0	0
time	0	1	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minors	0	0	0	0	0	0	0	1	1

$$A \in \mathbb{R}^{n \times n}$$

$$(2) A \neq A^T$$

$$\exists U, V \in \mathbb{R}^{n \times n}$$
 st $U^T U = I, V^T V = I$ orthogonal

sin gular value decomposit ion:

$$A = UDV^{T}$$
(AB)^T= B^T A^T

$$AA^T = (UDV^T)(UDV^T)^T = (UDV^T)(VDU^T) = UD^2U^T$$

where D =
$$\begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}$$

0

diagonal matrix

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_n \ge 0$$

$$A = QDQ^T$$

$$AQ = QDQ^TQ = QD$$

where $Q = [q_1 \quad q_2 \quad \dots \quad q_n], \quad q_i : a \ column \ vector$

$$A[q_1 \ q_2 \dots q_n] = [q_1 \ q_2 \dots q_n]$$

$$[Aq_1 \ Aq_2 \ ... \ Aq_n] = [\lambda_1 q_1 \ \lambda_2 q_2 \ ... \lambda_n q_n]$$

$$Aq_1 = \lambda_1 q_1 \ Aq_2 = \lambda_2 q_2 \ ... \ Aq_n = \lambda_n q_n$$

$$\lambda_1, \lambda_2, ..., \lambda_n \text{ are eigenvalues of A}$$

$$Q_k \text{ is } \lambda_k \text{'s corresponding eigenvector}$$

Singular Value Decomposition

 \overline{M} : a term-document matrix with t rows and N columns

$$\overrightarrow{M} = \overrightarrow{K} \overrightarrow{S} \overrightarrow{D}^t$$

 $\overrightarrow{M}^{t}\overrightarrow{M}:a\ N\times N\ document-to-document\ matrix$

 $\overrightarrow{M}\overrightarrow{M}^{t}: a \ t \times t \ term-to-term \ matrix$

According to

$$\overrightarrow{M} \in R^{t \times N}$$

 $\exists \overrightarrow{K} : the \ matrix \ of \ eigenvectors \ derived \ from \ \overrightarrow{M} \ \overrightarrow{M}^t \quad \overrightarrow{K}^t \ \overrightarrow{K} = I$

 \overline{D} : the matrix of eigenvectors derived from $\overline{M}^t \overline{M}$ $\overline{D}^t \overline{D} = I$

$$\overrightarrow{M} = \overrightarrow{K}\overrightarrow{S}\overrightarrow{D}^t$$

$\overrightarrow{M}^{t}\overrightarrow{M}: document-to-document\ matrix$

$$= (\overline{K}\overline{S}\overline{D}^{t})^{t} (\overline{K}\overline{S}\overline{D}^{t})$$

$$= (\overline{D}\overline{S}^{t}\overline{K}^{t})(\overline{K}\overline{S}\overline{D}^{t})$$

$$= \overline{D}\overline{S}^{2}\overline{D}^{t}$$

$$\overrightarrow{M}\overrightarrow{M}^{t}: term-to-term \ matrix$$

$$= (\overrightarrow{K}\overrightarrow{S}\overrightarrow{D}^{t})(\overrightarrow{K}\overrightarrow{S}\overrightarrow{D}^{t})^{t}$$

$$= (\overrightarrow{K}\overrightarrow{S}\overrightarrow{D}^{t})(\overrightarrow{D}\overrightarrow{S}^{t}\overrightarrow{K}^{t})$$

$$= \overrightarrow{K}\overrightarrow{S}^{2}\overrightarrow{K}^{t}$$

對照A=QDQT

Q is matrix of eigenvectors of A
D is diagonal matrix of singular values
得到

 \overrightarrow{D} : the matrix of eigenvectors derived from $\overrightarrow{M}^t\overrightarrow{M}$

 \overline{K} : the matrix of eigenvectors derived from $\overline{M}\overline{M}^t$

 \overline{S} : $r \times r$ diagonal matrix of $\sin gular$ values, where $r = \min(t, N)$

Consider only the s largest singular values of S

The resultant \overrightarrow{M}_s matrix is the matrix of rank s which is closest to the original matrix M in the least square sense.

$$\overrightarrow{M}_s = \overrightarrow{K}_s \overrightarrow{S}_s \overrightarrow{D}_s^t$$
(s<

Ranking in LSI

- query: a pseudo-document in the original M term-document
 - query is modeled as the document with number0
 - $-\overrightarrow{M}_s^{t}\overrightarrow{M}_s$: the ranks of all documents w.r.t this query

Research Issues

Library systems

 Cognitive and behavioral issues oriented particularly at a better understanding of which criteria the users adopt to judge relevance

Specialized retrieval systems

- e.g., legal and business documents
- how to retrieve all relevant documents without retrieving a large number of unrelated documents

• The Web

- User does not know what he wants or has great difficulty in formulating his request
- How the paradigm adopted for the user interface affects the ranking
- The indexes maintained by various Web search engine are almost disjoint