Lecture 3

Terms Weighting -- TFIDF

Terms?

term doc. freq.

anﬂﬂﬁous‘ 1‘

be | 1

Terms
and
counts

brutus

2|

capitol

il

caesar

2

did | 1

enact

hath | 1

1
|1
it | 1]

julius | 1
killed | 1

let | 1
me |1

noble

L]

so | 1

the | 2

told

was | 2

:

)

e e e

=]

NEENERERNEREREEENE

I
1NN

!
]

with | 1

Pointe

> ENNERNNE

\JJ

R lil

ostings lists

fi

Lists of
docIDs

Zipf Distribution

= The Important Points:

= a few elements occur very frequently

= a medium number of elements have medium
frequency

= many elements occur very infrequently

Observation: MANY phenomena can be

characterized this wax.

= \Words in a text collection

= Library book checkout patterns

= |Incoming Web Page Requests (Nielsen)

= Outgoing Web Page Requests (Cunha & Crovella)
= Document Size on Web (Cunha & Crovella)

Sample Word Frequency Data

(from B. Croft, UMass)

Frequent Number of Percentage
Word Occurrences of Total
the 7,398,934 5.9
of 3,893,790 3.1
o 3,364,653 2.7
and 3,320,687 2.6
in 2,311,785 1.8
is 1,559,147 1.2
for 1,313,561 1.0
The 1,144,860 0.9
that 1,066,503 0.8
said 1,027,713 0.8

Frequencies from 336,310 documents in the 1GB TREC Volume 3 Corpus
125,720,891 total word occurrences; 508,209 unique words

Zipf Distribution

_ 800 .

JOO=+ _—and
L | e
The product of the 2 :’
= 60071 | o
frequency of words (f) and = |+
their rank (r) is 8 soof
approximately constant < V~a o
E 400+ ‘ h
_E- *H.- T that
FELS SR
%
% 200+ “"?'
1004 _
0

Rank order of frequency

Zipf Distribution

(linear and log scale)

300

250

200

150

100

S

_—

O+—

0 50 100 150 200 250 300

1000

100

10

AN

AN

N\

AN

1 10

100

1000

Zipf Distribution

= The product of the frequency of words (f) and their rank (r)
IS approximately constant

= Rank = order of words’ frequency of occurrence

f=Cxl1/r
C=N/I10

= Another way to state this is with an approximately correct rule of
thumb:

= Say the most common term occurs C times
= [he second most common occurs C/2 times
= [he third most common occurs C/3 times

Very frequent word stems

worD FReq S o020 M
u 63245 http 100696
ha 65470 d 101034
california 67251 html 103698
m 67903 student 104635
1998 68662 univers 105183
system 69345 inform 106463
t 70014 will 109700
about 70923 new 115937
senic 71822 have 119428
work 71958 page a2
ST 72131 messag 141542
other 79726 from 147440
research 74264 you 162499
edu 167298
1997 75323 be 185162
gan renes publib 189334
next 77973 librari 189347
your 78489 i 190635
all 79993 lib 223851
public 81427 that 227311
us 82551 S 234467
c 83250 berkelei 245406
WWW 87029 re 272123
wa 92384 web 280966

program 95260 archiv 305834

Sheet1

		WORD		FREQ

		u		63245

		ha		65470

		california		67251

		m		67903

		1998		68662

		system		69345

		t		70014

		about		70923

		servic		71822

		work		71958

		home		72131

		other		72726

		research		74264

		1997		75323

		can		76762

		next		77973

		your		78489

		all		79993

		public		81427

		us		82551

		c		83250

		www		87029

		wa		92384

		program		95260

		we		99220

		not		100204

		http		100696

		d		101034

		html		103698

		student		104635

		univers		105183

		inform		106463

		will		109700

		new		115937

		have		119428

		page		128702

		messag		141542

		from		147440

		you		162499

		edu		167298

		be		185162

		publib		189334

		librari		189347

		i		190635

		lib		223851

		that		227311

		s		234467

		berkelei		245406

		re		272123

		web		280966

		archiv		305834

Sheet1

		WORD		FREQ

		u		63245

		ha		65470

		california		67251

		m		67903

		1998		68662

		system		69345

		t		70014

		about		70923

		servic		71822

		work		71958

		home		72131

		other		72726

		research		74264

		1997		75323

		can		76762

		next		77973

		your		78489

		all		79993

		public		81427

		us		82551

		c		83250

		www		87029

		wa		92384

		program		95260

		we		99220

		not		100204

		http		100696

		d		101034

		html		103698

		student		104635

		univers		105183

		inform		106463

		will		109700

		new		115937

		have		119428

		page		128702

		messag		141542

		from		147440

		you		162499

		edu		167298

		be		185162

		publib		189334

		librari		189347

		i		190635

		lib		223851

		that		227311

		s		234467

		berkelei		245406

		re		272123

		web		280966

		archiv		305834

WORD
agendalJaugu
anlJelectronic
centerlJJjanu
packard]equi
system(][Jjuly
systems(ics1
today[Imcb
workshops [fi
workshops [t
Clollini
0+
0
00summary
35816
35823
01d
35830
35837
02-156-10
35844
35851
02aframst
311
313
03agenvchm
401
408

B e T T e N N N . . . e e T T YT N N N N N . N e e T

408
422
424
429
O4agrcecon
O4cklist
05-128-10
501
506
05amstud
O6anhist
07-149
07-800-80
07anthro
08apst

Words that occur few times

_em A R R D A 2 2 D 2 2

Sheet1

		WORD		FREQ

		agenda�august		1

		an�electronic		1

		center��january		1

		packard�equipment		1

		system��july		1

		systems�cs186		1

		today�mcb		1

		workshops�finding		1

		workshops�the		1

		lollini		1

		0+		1

		0		1

		00summary		1

		35816		1

		35823		1

		01d		1

		35830		1

		35837		1

		02-156-10		1

		35844		1

		35851		1

		02aframst		1

		311		1

		313		1

		03agenvchm		1

		401		1

		408		1

		422		1

		424		1

		429		1

		04agrcecon		1

		04cklist		1

		05-128-10		1

		501		1

		506		1

		05amstud		1

		06anhist		1

		07-149		1

		07-800-80		1

		07anthro		1

		08apst		1

		0917+7122		1

Sheet1

		WORD		FREQ

		agenda�august		1

		an�electronic		1

		center��january		1

		packard�equipment		1

		system��july		1

		systems�cs186		1

		today�mcb		1

		workshops�finding		1

		workshops�the		1

		lollini		1

		0+		1

		0		1

		00summary		1

		35816		1

		35823		1

		01d		1

		35830		1

		35837		1

		02-156-10		1

		35844		1

		35851		1

		02aframst		1

		311		1

		313		1

		03agenvchm		1

		401		1

		408		1

		422		1

		424		1

		429		1

		04agrcecon		1

		04cklist		1

		05-128-10		1

		501		1

		506		1

		05amstud		1

		06anhist		1

		07-149		1

		07-800-80		1

		07anthro		1

		08apst		1

		0917+7122		1

Word Frequency vs. Resolving Power

The most frequent words are not the most descriptive.

Upper cut-off Lower cut-off

/ -

Resolving power of
— Significant words

@t words

Frequency of words
1

N

Words by rank order

Statistical Independence

Two events x and y are statistically independent if
the product of their probability of their happening
individually equals their probability of happening
together.

P(x)P(y) = P(x,y)

Indexing

= Indexing: to text items.
= assign: VS. Indexing
= identifiers:
. VS. text identifiers
n VS. vocabularies

Two Issues

= Issue 1: indexing exhaustivity
= exhaustive: assign a large number of terms
= nonexhaustive

= Issue 2: term specificity
= broad terms (generic)

= narrow terms (specific)

Parameters of
retrieval effectiveness

s Recall

P Number of relevant items retrieved

.. Total number of relevant items in collection
s Precision

P Number of relevant items retrieved

s Goal
high recall and high precision

Total number of items retrieved

Retrieved

Nonrelevant Relevant
Items Items

. a
d Precision =

a+d a+h

Recall =

A Joint Measure

s F-score

F:(,B2+1)><P><R

3 x P+ R
» [is a parameter that encode the importance of
recall and procedure.

» B=1: equal weight
= 3>1: precision is more important
s 3<1:recall is more important

Choices of Recall and Precision

= Both recall and precision vary from 0 to 1.

= In principle, the average user wants to achieve
both high recall and high precision.

= In practice, a compromise must be reached
because simultaneously optimizing recall and
precision is not normally achievable.

Choices of Recall and Precision (continued)
- .

= Particular choices of indexing and search policies
have produced variations in performance ranging
from 0.8 precision and 0.2 recall to 0.1 precision
and 0.8 recall.

= In many circumstance, both the recall and the
precision varying between 0.5 and 0.6 are more
satisfactory for the average users.

Term-Frequency Consideration

= for example, "and", "or", "of", "but", ...
= the frequencies of these words are high in all texts

= words that actually relate to document content

» varying frequencies in the different texts of a
collect

= indicate term importance for content

A Frequency-Based Indexing Method

o common from the document
texts by consulting a special dictionary, or stop list,
containing a list of high frequency function words.

o the tfij for all remaining terms T,
in each document Di, specifying the number of
occurrences of Tjin Di.

o a T, and assign to each
document Di all term T, for which tfi> T.

Discussions

= high-frequency terms

= high precision

= high-frequency terms

Ranked retrieval

-
= Thus far, our queries have all been Boolean.

s Documents either match or don't.

= Good for expert users with precise understanding
of their needs and the collection.

= Also good for applications: Applications can
easily consume 1000s of results.
= Not good for the majority of users.

» Most users incapable of writing Boolean queries
(or they are, but they think it's too much work).

= Most users don’t want to wade through 1000s of
results.

= This is particularly true of web search.

Problem with Boolean search:
feast or famine

= Boolean queries often result in either too few (=0)
or too many (1000s) results.

= Query 1: “standard user iPhone6 * — 200,000
hits

= Query 2: “standard user iPhone6 no SIMcard
found”: O hits

= |t takes skill to come up with a query that
produces a manageable number of hits.

= With a ranked list of documents it does not
matter how large the retrieved set is.

Scoring as the basis of ranked
retrieval

x \We wish to return in order the documents most
likely to be useful to the searcher

= How can we rank-order the documents in the
collection with respect to a query?

= Assign a score — say in [0, 1] — to each document

s [his score measures how well document and
query “match”.

Query-document matching scores

= We need a way of assigning a score to a
query/document pair

= Let's start with a one-term query

= If the query term does not occur in the document:
score should be 0

= The more frequent the query term in the
document, the higher the score (should be)

x We will look at a number of alternatives for this.

Jaccard coefficient

= Recall set similarity: A commonly used measure
of overlap of two sets A and B

= jaccard(A,B) =|ANB|/|A U B|

= jaccard(AA) =1

= jaccard(A,B) =0ifANB=20

= A and B don’t have to be the same size.

= Always assigns a number between 0 and 7.

Jaccard coefficient: Scoring
example

= What is the query-document match score that the
Jaccard coefficient computes for each of the two
documents below?

= Query: ides of march
s Document 1: caesar died in march
= Document 2: the long march

Issues with Jaccard for scoring

= It doesn’t consider term frequency (how many
times a term occurs in a document)

s Rare terms in a collection are more informative
than frequent terms. Jaccard doesn’t consider
this information

= We need a more sophisticated way of
normalizing for length

= Later in this lecture, we'll use |ANB|/{|AUB|

= ...instead of |A N B|/|A U B| (Jaccard) for
length normalization.

Recall (Lecture 1): Binary term-
document incidence matrix

Antony and Cleopatra
Antony 1
Brutus
Caesar
Calpurnia
Cleopatra

mercy

- s =S O = =

worser

Julius Caesar The Tempest

O O O =) = = o=

0

- a2 O O O O

Hamlet

0

1
1
0
0
1
1

Othello
0

- = O O - O

Macbeth
1

© = O O = O

Each document is represented by a binary vector € {0,1}IV

Shakepeare

				Antony and Cleopatra		Julius Caesar		The Tempest		Hamlet		Othello		Macbeth

		Antony		1		1		0		0		0		1

		Brutus		1		1		0		1		0		0

		Caesar		1		1		0		1		1		1

		Calpurnia		0		1		0		0		0		0

		Cleopatra		1		0		0		0		0		0

		mercy		1		0		1		1		1		1

		worser		1		0		1		1		1		0

Term-document count matrices

s Consider the number of occurrences of a term in

Antony
Brutus
Caesar
Calpurnia
Cleopatra
mercy

worser

a document:
» Each document is a count vector

below

Antony and Cleopatra
157
4
232
0
57
2
2

Julius Caesar
73
157
227
10
0
0
0

The Tempest
0

0
0
0
0
3
1

in NY: a column

Hamlet

0

1
2
0
0
5
1

Othello
0

- U1 O O =~ O

Macbeth
0

O = O O = OO

Shakepeare

				Antony and Cleopatra		Julius Caesar		The Tempest		Hamlet		Othello		Macbeth

		Antony		157		73		0		0		0		0

		Brutus		4		157		0		1		0		0

		Caesar		232		227		0		2		1		1

		Calpurnia		0		10		0		0		0		0

		Cleopatra		57		0		0		0		0		0

		mercy		2		0		3		5		5		1

		worser		2		0		1		1		1		0

Term-document count matrices

s Consider the number of occurrences of a term in

iSs a count vector in NY: a column

a document:
» Each document
below
Antony and Cleopatra | Julius Caesar | The Tempest
Antony 157 73 0
Brutus 4 157 0
Caesar 232 227 0
Calpurnia 0 10 0
Cleopatra 57 0 0
mercy 2 0 3
worser 2 0 1

Hamlet

0

1
2
0
0
5
1

Othello
0

= 1 ©O O = O

Macbeth
0

o = O O = O

Shakepeare

				Antony and Cleopatra		Julius Caesar		The Tempest		Hamlet		Othello		Macbeth

		Antony		157		73		0		0		0		0

		Brutus		4		157		0		1		0		0

		Caesar		232		227		0		2		1		1

		Calpurnia		0		10		0		0		0		0

		Cleopatra		57		0		0		0		0		0

		mercy		2		0		3		5		5		1

		worser		2		0		1		1		1		0

Bag of words model

= Vector representation doesn’t consider the
ordering of words in a document

m John is quicker than Mary and Mary is quicker
than John have the same vectors

= This is called the bag of words model.

m |n a sense, this is a step back: The positional
Index was able to distinguish these two
documents.

= We will look at “recovering” positional information
later in this course.

= For now: bag of words model

Term frequency tf

= The term frequency tf; ; of term fin document d is
defined as the number of times that f occurs in d.

= We want to use tf when computing query-
document match scores. But how?

= Raw term frequency is not what we want:

s A document with 10 occurrences of the term is

more relevant than a document with 1 occurrence
of the term.

= But not 10 times more relevant.
= Relevance does not increase proportionally with

term frequency.

Log-frequency weighting

= The log frequency weight of termtin d is
{1 + log,, tf, ,, it tf, , >0
Wia =

OR otherwise

» 0-0,1-1,2—-513,10 - 2,1000 — 4, etc.

= Score for a document-query pair: sum over terms
tin both g and d.

= SCOre — Zteqmd (1+logtf, ,)

= The score is 0 if none of the query terms is
present in the document.

Document frequency

= Rare terms are more informative than frequent terms
= Recall stop words

s Consider a term in the query that is rare in the
collection (e.g., arachnocentric)

= A document containing this term is very likely to be
relevant to the query arachnocentric

= — \We want a high weight for rare terms like
arachnocentric.

Document frequency, continued

= Consider a query term that is frequent in the
collection (e.g., high, increase, line)

= A document containing such a term is more likely
to be relevant than a document that doesn’t, but
it's not a sure indicator of relevance.

= — For frequent terms, we want positive weights
for words like high, increase, and line, but lower
weights than for rare terms.

= We will use document frequency (df) to capture
this in the score.

s df (£ N) is the number of documents that contain
the term

idf weight

= df; is the document frequency of t: the number of
documents that contain ¢

s df is a measure of the informativeness of ¢
= We define the idf (inverse document frequency)

OHBY df =log,, N/f

» We use log N/df, instead of N/df; to “dampen” the
effect of idf.

Will turn out the base of the log is immaterial.

idf example, suppose N= 1 million

calpurnia 1 6
animal 100 4
sunday 1,000 3
fly 10,000 2
under 100,000 1
the 1,000,000 0

There is one idf value for each term tin a collection.

Collection vs. Document frequency

= The collection frequency of t is the number of
occurrences of t in the collection, counting
multiple occurrences.

= Example:
“ Collection frequency Document frequency
insurance 10440 3997
try 10422 8760

= Which word is a better search term (and should
get a higher weight)?

tf-idf weighting

= The tf-idf weight of a term is the product of its tf
weight and its idf weight.

w =(l+logtt, ;) xlog,, N/df,

= Best known weighting scheme in information retrieval
= Note: the “-" in tf-idf is a hyphen, not a minus sign!
= Alternative names: tf.idf, tf x idf

s Increases with the number of occurrences within a
document

= Increases with the rarity of the term in the collection

Binary — count — weight matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0
Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0
mercy 1.51 0 1.9 0.12 5.25 0.88
worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued
vector of tf-idf weights € RV

Shakepeare

				Antony and Cleopatra		Julius Caesar		The Tempest		Hamlet		Othello		Macbeth

		Antony		5.25		3.18		0		0		0		0.35

		Brutus		1.21		6.1		0		1		0		0

		Caesar		8.59		2.54		0		1.51		0.25		0

		Calpurnia		0		1.54		0		0		0		0

		Cleopatra		2.85		0		0		0		0		0

		mercy		1.51		0		1.9		0.12		5.25		0.88

		worser		1.37		0		0.11		4.15		0.25		1.95

Documents as vectors

= S0 we have a |V|-dimensional vector space
= Terms are axes of the space
= Documents are points or vectors in this space

= Very high-dimensional: hundreds of millions of
dimensions when you apply this to a web search
engine

= [his is a very sparse vector - most entries are
Zero.

Queries as vectors

= Key idea 1: Do the same for queries: represent
them as vectors in the space

= Key idea 2: Rank documents according to their
proximity to the query in this space

= proximity = similarity of vectors

= proximity = inverse of distance

= Recall: We do this because we want to get away
from the you're-either-in-or-out Boolean model.

= Instead: rank more relevant documents higher
than less relevant documents

Formalizing vector space proximity

= First cut: distance between two points

s (= distance between the end points of the two
vectors)

s Euclidean distance?
s Euclidean distance is a bad idea . ..

= ... because Euclidean distance is large for
vectors of different lengths.

Why distance is a bad idea

The Euclidean GOSSIP clo
distance between @ dy

, T
and 32 Is large even

though the

distribution of terms
in the query ¢ and
the distribution of

terms in the
document FZ are

very similar.

JEALOUS

Use angle instead of distance

= [hought experiment: take a document d and
append it to itself. Call this document d'.

= “Semantically” d and d' have the same content

= [he Euclidean distance between the two
documents can be quite large

= [he angle between the two documents is 0O,
corresponding to maximal similarity.

= Key idea: Rank documents according to angle
with query.

Similarity of document d; w.r.t. query g

= [he correlation between vectors c_i; and a'

djeq d

]

sim(d ;,q) =

dj1x]q) i
COS(Q;
XM Mg J,q)//
t 2 t 2 0
\/ 21 Wi, ><\/ 2 =1Wi,q

= | q’| does not affect the ranking Q
= | d; | provides a normalization

From angles to cosines

= The following two notions are equivalent.

= Rank documents in decreasing order of the angle
between query and document

s Rank documents in increasing order of
cosine(query,document)

= Cosine is a monotonically decreasing function for
the interval [0°, 180°]

Length normalization

= A vector can be (length-) normalized by dividing
each of its components by its length — for this we

use the L, norm: H)—C»H :W
2 i

= Dividing a vector by its L, norm makes it a unit
(length) vector

= Effect on the two documents d and d’ (d
appended to itself) from earlier slide: they have
identical vectors after length-normalization.

cosine(query,document)

Dot product Unit vectors

)
\~ Vg

.d q d zlql !

] ‘d‘ \/Z\V\ ; \/Z\V\ 7

cos(G,d) =

q; is the tf-idf weight of term j in the query

d; is the tf-idf weight of term jin the document
cos(q,d) is the cosine similarity of g and d. T,
equivalently, the cosine of the angle between g and d

Cosine similaritx amongst 3 documents

How similar are
the novels

SaS: Sense and
Sensibility

PaP: Pride and
Prejudice, and
WH: Wuthering
Heights?

affection 115 58 20
jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

Term frequencies (counts)

3 documents example contd.

Log frequency weighting

affection 3.06 2.76

jealous 2.00 1.85
gossip 1.30 0
wuthering 0 0

cos(SaS,PaP) =

2.30
2.04
1.78
2.58

After normalization

affection
jealous
gossip
wuthering

0.789
0.515
0.335

0

0.832
0.555

0

0.524
0.465
0.405
0.588

0.789 x 0.832 + 0.515 x 0.555 + 0.335 * 0.0 + 0.0 * 0.0

~ 0.94
cos(SaS,WH) = 0.79
cos(PaP,WH) = 0.69

Why do we have cos(SaS,PaP) > cos(SAS,WH)?

Computing cosine scores

I
COSINESCORE(Qq)

1 float Scores[N] =0

float Length[N]

for each query term t

do calculate w; 4 and fetch postings list for t
for each pair(d,tf;4) in postings list
do Scores[d|+ = wi g X Wt g

Read the array Length

for each d

do Scores|d] = Scores|d|/Length[d]

return Top K components of Scoresl||

O O 00 Ny O B W N

e

tf-idf weighting has many variants

Term frequency Document frequency Normalization
n (natural) tfe g n (no) 1 n (none) 1
| (logarithm) 1+ log(tf:.q) t (idf) log % c (cosine))
NCET =
a (augmented) 0.5+ &'ﬂé?‘i p (prob idf) max{0,log Nafdf’} u (pivoted l/u
maxe (tT; 4) ‘ unique)
b (boolean) L if thed >0 b (byte size) 1/CharLength”
0 otherwise &j -1 ’
L (] 1+log(tfe 4)
(log ave) TimogGavescaliizg)

Columns headed ‘n’ are acronyms for weight schemes.

Why is the base of the log in idf immaterial?

Weighting may differ in queries vs
documents

= Many search engines allow for different
weightings for queries vs documents

= [0 denote the combination in use in an engine,
we use the notation qgqg.ddd with the acronyms
from the previous table

= Example: Itn.ltc means:

= Query: logarithmic tf (I in leftmost column), idf (t
in second column), no normalization ...

= Document logarithmic tf, no idf and cosine
normalization 2

Is this a bad idea?

tf-idf example: Itn.Inc

Document: car insurance auto insurance
Query: best car insurance

tf-raw tf-wt df idf wt tf-raw tf-wt wit n’lized

auto 0 0 5000 2.3 0 1 1 1 0.52 0
best 1 1 50000 1.3 1.3 0 0 0 0 0
car 1 1 10000 2.0 2.0 1 1 1 0.52 1.04
insurance 1 1 1000 3.0 3.0 2 1.3 1 0.68 2.04

Exercise: what is N, the number of docs?

Doc length = 12+ 0 + 1> + 1> #1.92
Score = 0+0+1.04+2.04 = 3.08

Summary — vector space ranking

Represent the query as a weighted tf-idf vector
Represent each document as a weighted tf-idf vector

Compute the cosine similarity score for the query
vector and each document vector

Rank documents with respect to the query by score
Return the top K (e.g., K= 10) to the user

Vector Representation of Text

Word Embedding Technique
(word2vec)

Word to vector (word2vector)

* The more often two words co-occur, the closer
their vectors will be

* Two words have close meanings if their local
neighborhoods are similar

man

.
) Sl woman

)
king Sl
.

queen

/\.

Male-Female

walked

swam
O

walking e

o

swimming

Verb tense

Epain \
Italy —--_,‘__h““_‘“__-““madrid

Rome

Germany _“—‘—“—"‘“——————h_h_

Berlin

Turkey \
Ankara

Russia ———mnw— =
Moscow
Canada Ottawa

Japan
P Tokyo

Vietnam Hanoi

China =——— Beijing

Country-Capital

Problem?

Distributed representations

Word vectors aren’t guaranteed to encode any
linguistic relationships between words, but many
models produce vectors that do

1

frog [0300.70] .. ’EZTZQ
toad [0. 250L75 | s
o lizard

izard [0.350.50]
house [0.850.10] ©9&

house
=

0 0.25 0.5 0.75 1

Example

Any technique mapping a word (or phrase) from it's
original high-dimensional input space (the body of
all words) to a lower-dimensional numerical vector
space - so one embeds the word in a different space

% body part
¢ food : -

city 2% Points: original word space

N N . ntravel £

'; l. Y ® Cow

» AN ‘ Colored points / clusters: Word
L Yyl embedding
s’ relative

Source: http://sebastianruder.com/content/images/2016/04/word_embeddings_colah.png

Word Reeresentations

Uses one hot encoding

Each word in the vocabulary is
represented by one bit positionin a
HUGE vector.

For example, if we have a vocabulary
of 10000 words, and “Hello” is the 4t
word in the dictionary, it would be
representedby: 000100
000

Context information is not utilized

Stores each word in as a point in
space, where it is represented by a
vector of fixed number of dimensions
(generally 300)

Unsupervised, built just by reading
huge corpus

For example, “Hello” might be
represented as :
[0.4,-0.11,0.55,0.3...0.1,0.02]

Dimensions are basically projections
along different axes, more of a
mathematical concepit.

Architecture

Input Vocabulary .
Corpus Builder Lossy Counting
Vocabulary
Sentence Windows Context Dynamic Wi ndow Scaling
| Builder | Subsampling
| Pruning
CBOW Skip-gram
Tripar Tagac Hidden layar Crrtprar layer
oz | B
e e o
Input o - Output
=5 fa b A ok
Words | Wt 9w Words
—| Parameter |
Learner
Backpropagation

Hierarchical Softmax
Negative Sampling

To compare pieces of text

= We need effective representation of
= Words
= Sentences
= [ext

= Approach 1: Use existing thesauri or ontologies like
WordNet and Snomed CT (for medical).

Drawbacks:
= Manual
= Not context specific

= Approach 2: Use co-occurrences for word similarity.
Drawbacks:

= Quadratic space needed
= Relative position and order of words not considered

n x k

Approach 3: low dimensional vectors

Store only “important” information in fixed, low dimensional vector.
Singular Value Decomposition (SVD) on co-occurrence matrix
= X is the best rank k approximation to X , in terms of least squares
= Motel =[0.286, 0.792,-0.177,-0.107, 0.109, -0.542, 0.349, 0.271]
m = n = size of vocabulary

S is the same matrix as S except that it contains only the top largest
singular values

X =UDVT

nxk| [kxk k x k

Diagonal Orthogonal
matrix matrix

Orthogonal
matrix

66

Example of Approach 3: low dimensional

vectors
- .

o An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence [Rohde et al. 2005]

N NG
u CHOBENOSE
wSTOLEN
0STOLE
DSTEALING
0 SRR, ASFERR * TAKE
¥ @E’ﬂw@ B TAKEN TAKING
o TOOK
= THPRABR R w
BSHOWN
© SHOWED mEATENT
OATE
OSHOWING oeafiE
#SHOW
" GRQENow
0GREW
DGROWING

67

Problems with SVD

= Computational cost scales quadratically for n x m
matrix: O(mn?) flops (when n<m)

= Hard to incorporate new words or documents
= Does not consider order of words

68

word2vec approach to represent the

meaning of word
- —

= Represent each word with a low-dimensional
vector

= Word similarity = vector similarity

= Key idea: Predict surrounding words of every
word

= Faster and can easily incorporate a new
sentence/document or add a word to the
vocabulary

69

Represent the meaning of word —
word2vec

s 2 basic neural network models:

s Continuous Bag of Word (CBOW): use a window of
word to predict the middle word

» Skip-gram (SG): use a word to predict the
surrounding ones in window.

TT

2) |\ w(t-2)
\ /
) \\ // w(t-1)
\\SUM /
T > I \
% \
/ \\ w(t+1)
\
N s

CcBOw Skip-gram 70

Word2vec — Continuous Bag of
Word

= E.g. “The cat sat on floor”
= Window size = 2

INPUT PROJECTION OUTPUT
the (t-2)
cat w(t-1)

. su

/ — (t)
on (t+1) /
flo (t+2)

71

Input layer

Index of cat in vocabulary

cat

one-hot
vector

on

[o]: I=lofolee]=]~]-]

el d=lofofol-]=]-]-]

Hidden layer Output layer

one-hot
vector

sat

el 1-1=l=lo]=]=]=]-]

72

We must learn W and W’

Input layer
o]
L
L0
L0 .
catlel W Hidden layer Output layer
o VXN .
L0 L0
L0 L0
] L0
V-dim|o] , 0
0
w NXV = sat
o o
o]]
o . =
1 -aim o] V-dim
0| WVxN
on =
L0
L0
L0
V-dim Z N will be the size of word vector

73

T —
Wysn X Xcat =
01|24/16|18/05[09 .| ... |32
Input layer|os|26/14 291536/ .| ... | .. 64
o] X _
L
0
n 0.6(1.8/2.7/1.9(24 2.0 12
XLdL 0 W?Y
1 X
0 CQ'[=~
V-dim |2
ﬁ _ vcat + von
_ 2
1 0
0] z
0 "
0 +*°
0 Hidden layer
Xorfo] WY "
= N-dim
o]
V-dim|0]

Output layer

sat

V-dim

74

T
WV)(N

01/24|16/1.8/05/09] ...
Input layer os|26/1429/15 36/ ..
0]
L
0
0 | 06[1.8/27/1.9(24|20
XLdL 0 W?Y
X X
0 CQ'[=~
V-dim[¢] Cqr
+
0] A
o z
0 W
0 +*°
| 0| Hidden layer
Xon 5 N‘EJ +Y\ . Yy
= N-dim
o]
V-dim|0]

X Xon = VUpn

Output layer

sat

V-dim

75

Input layer
o]
L
0
o] .

catlol W Hidden layer Output layer
o VXN .
0 L0
o] o]
] L0

V-dim|2/ Lo~
Wyxn X0 =2z [£|¥ = softmax(z)
VXN =

o o
0] [
Z U =
1 W [0
0] VXN N-dim

on 0 Fsat
0 .
Z V-dim

V-dim Z N will be the size of word vector

76

Input layer
n
0 We would prefer § close to ¥,
0
o .
catlel W Hidden layer Output layer
0] VXN _
0 | 0} 0.01
0 L0
[| 5 0.02
V-dim Z Z 0.00
I A 0
WVXN XV=2Z = 0.02
o] y = softmax(z)[2 0.0t
0| K 0.02
% W v — 0.01
on Z VXN N-dim T 0.7
0 Ysat
% V-dim 0.00
V-dim Z N will be the size of word vector y

77

T
WVXN
01/24/16/18/05/09| ... | 132 . y
| Contain word’s vectors
Input layer|os|26[14/29]15/36] .| .| .. 61
o]
L
0
T 06/18/27119/124|20| ... |...|... |12
Xeat g Output layer
0 | 0|
o Wysn o
V-dim |2 , 0]
0
WVXN = sat
o o
0] 1]
0
L WVXN _ 0] V-dim
X Hidden layer
on 0 i
= N-dim
o]
V-dim|0]

We can consider either W or W’ as the word'’s
representation. Or even take the average.

簡報者
簡報註解
W contains input word vectors.
W’ contains output word vectors.

We can consider either W or W’ as the word’s representation. Or even take the average.

Some interesting results

Word Analogies

Test for linear relationships, examined by Mikolov et al. (2014)

_ T,
ab:c? — d = arg max (wp — Wy +we) " wy
e |lwp — wa +well

man:woman :: king:?

+ king [0.300.70] 07e . queen
- ing
man [0.200.20]
0.5
+ woman [0.600.30]
woman
0.25 man
queen [0.700.80]
0
0 0.25 05 075 1

79

Word analogies

2 T T I T T T T
China«
‘Beijing
1.5 - Russia<
Japan«
Moscow
1+
Turkey< Ankara ~Tokyo
05 +
Poland:
0 Germany-
France "Warsaw
w Berlin
-05 Italy< Paris
« - —Athens
Greece«
1 L Spain Rome
» »Madrid
-1.5 |- Portugal JLisbon
_2 | 1 1 1 1 | 1

Represent the meaning of sentence/text
- —

= Simple approach: take avg of the word2vecs of its
words
= Another approach: Paragraph vector (2014, Quoc
Le, Mikolov)
= Extend word2vec to text level

= Also two models: add paragraph vector as the
Input

81

Applications

= Word Similarity: Edit Distance, WordNet, Porter's
Stemmer, Lemmatization using dictionaries

= Search, e.g., query expansion

= Machine Translation

= Part-of-Speech and Named Entity Recognition
= Relation extraction

= Sentiment analysis

= Semantic Analysis of Documents

= Clustering

82

	投影片編號 1
	Terms?
	Zipf Distribution
	Observation: MANY phenomena can be characterized this way.
	Sample Word Frequency Data�(from B. Croft, UMass)
	Zipf Distribution
	Zipf Distribution�(linear and log scale)
	Zipf Distribution
	Very frequent word stems
	Words that occur few times
	Word Frequency vs. Resolving Power �(from van Rijsbergen 79)
	Statistical Independence
	Indexing
	Two Issues
	Parameters of �retrieval effectiveness
	投影片編號 16
	A Joint Measure
	Choices of Recall and Precision
	Choices of Recall and Precision (Continued)
	Term-Frequency Consideration
	A Frequency-Based Indexing Method
	Discussions
	Ranked retrieval
	Problem with Boolean search: feast or famine
	Scoring as the basis of ranked retrieval
	Query-document matching scores
	Jaccard coefficient
	Jaccard coefficient: Scoring example
	Issues with Jaccard for scoring
	Recall (Lecture 1): Binary term-document incidence matrix
	Term-document count matrices
	Term-document count matrices
	Bag of words model
	Term frequency tf
	Log-frequency weighting
	Document frequency
	Document frequency, continued
	idf weight
	idf example, suppose N= 1 million
	Collection vs. Document frequency
	tf-idf weighting
	Binary → count → weight matrix
	Documents as vectors
	Queries as vectors
	Formalizing vector space proximity
	Why distance is a bad idea
	Use angle instead of distance
	Similarity of document dj w.r.t. query q
	From angles to cosines
	Length normalization
	cosine(query,document)
	Cosine similarity amongst 3 documents
	3 documents example contd.
	Computing cosine scores
	tf-idf weighting has many variants
	Weighting may differ in queries vs documents
	tf-idf example: ltn.lnc
	Summary – vector space ranking
	Vector Representation of Text
	Word to vector (word2vector)
	Problem?
	Example
	Word Representations
	Architecture
	To compare pieces of text
	Approach 3: low dimensional vectors
	Example of Approach 3: low dimensional vectors
	Problems with SVD
	word2vec approach to represent the meaning of word
	Represent the meaning of word – word2vec
	Word2vec – Continuous Bag of Word
	投影片編號 72
	投影片編號 73
	投影片編號 74
	投影片編號 75
	投影片編號 76
	投影片編號 77
	投影片編號 78
	Some interesting results
	Word analogies
	Represent the meaning of sentence/text
	Applications

