
Biomedical Information Retrieval

Lecture 2: Term vocabulary and
posting lists

Major subjects for this lecture

 Preprocessing to form the
“term vocabulary”

 Documents

 Tokenization

 What terms do we put in the index?

Information
need

Index

Pre-process

Parse

Collections

Rank

Query

text input
Term/Index ?

Content Analysis

 Automated Transformation of raw text into a
form that represent some aspect(s) of its
meaning

 Including, but not limited to:
 Automated Thesaurus Generation

 Phrase Detection

 Categorization

 Clustering

 Summarization

Techniques for Content
Analysis
 Statistical

 Single Document

 Full Collection

 Linguistic
 Syntactic

 Semantic

 Pragmatic

 Knowledge-Based (Artificial Intelligence)

 Hybrid (Combinations)

Text Processing

 Standard Steps:
 Recognize document structure

 titles, sections, paragraphs, etc.

 Break into tokens
 usually space and punctuation delineated

 special issues with Asian languages

 Stemming/morphological analysis

 Store in inverted index (to be discussed later)

Document Processing Steps

Stemming and Morphological Analysis

 Goal: “normalize” similar words

 Morphology (“form” of words)
 Inflectional Morphology

 E.g,. inflect verb endings and noun number

 Never change grammatical class

 dog, dogs

 tengo, tienes, tiene, tenemos, tienen

 Derivational Morphology
 Derive one word from another,

 Often change grammatical class

 build, building; health, healthy

Recall basic indexing pipeline

Tokenizer

Token stream. Friends Romans Countrymen
Linguistic
modules

Modified tokens. friend roman countryman

Indexer

Inverted index.

friend

roman

countryman

2 4

2

13 16

1

Documents to
be indexed.

Friends, Romans, countrymen.

Parsing a document

 What format is it in?
 pdf/word/excel/html?

 What language is it in?

 What character set is in use?

Each of these is a classification problem,
which we will study later in the course.

But these tasks are often done heuristically …

Initial stages of text processing

• Tokenization
– Cut character sequence into word tokens

• Deal with “John’s”, a state-of-the-art solution

• Normalization
– Map text and query term to same form

• You want U.S.A. and USA to match

• Stemming
– We may wish different forms of a root to match

• authorize, authorization

• Stop words
– We may omit very common words (or not)

• the, a, to, of

Complications: Format/language

 Documents being indexed can include docs
from many different languages
 A single index may have to contain terms of

several languages.
 Sometimes a document or its components

can contain multiple languages/formats
 French email with a German pdf attachment.

 What is a unit document?
 A file?
 An email? (Perhaps one of many in an mbox.)
 An email with 5 attachments?
 A group of files (PPT or LaTeX as HTML pages)

Tokens and Terms

字、詞、字串、符號、代碼…

Bag of Words

I love dogs I Love Dogs

Doc
1

1 1 1

Bag of Words

5

金蘋果
銀蘋果

紅蘋果

銀蘋果
對於這袋子
有多重要？

1/10000

1/1000

998.9/1000

金蘋果

銀蘋果

紅蘋果

銀蘋果

紅蘋果

WORD EMBEDDING

keras.layers.Embedding

1

passion
x: 0.119
y: 0.212
z: 0.010

• cat

• dog • goat

• hamster
• pig

• panda

Word2Vec

• cat
• dog

• goat

• hamster
• pig

• panda

Word2Vec
King

Man

Queen

Woman

“ The quick brown fox _____ over the lazy dog ”?
kicks
shots

throws
looks
jumps

“ The quick brown fox _____ over the lazy dog ”

quick

brown

fox

over

the

lazy

Hidden

0.0010
0.0000
0.0034

0.2421

0.0000
0.0000
0.0000

.

.

.

.

.

.

quick

brown

fox

over

the

lazy

Hidden

jumps

CBOW
Continuous bag-of-
words

quick

brown

fox

over

the

lazy

Hidden

jumps

Skip-gram
Continuous skip-
gram

0.0010
0.0000
0.0034

0.2421

0.0000
0.0000
0.0000

.

.

.

.

.

.

Probability listDimension coordination

“ The quick brown fox _____ over the lazy dog ”

grammatical, semantical similarity

Word Embedding Choices

1. Learnable embedding

2. Word2Vec

3. GloVe

4. FastText

Tokenization

 Input: “Friends, Romans and Countrymen”

 Output: Tokens
 Friends

 Romans

 Countrymen

 Each such token is now a candidate for an
index entry, after further processing
 Described below

 But what are valid tokens to emit?

Tokenization

 Issues in tokenization:
 Finland’s capital →

Finland? Finlands? Finland’s?

 Hewlett-Packard →
Hewlett and Packard as two tokens?
 state-of-the-art: break up hyphenated sequence.

 co-education

 lowercase, lower-case, lower case ?
 It’s effective to get the user to put in possible hyphens

 San Francisco: one token or two? How
do you decide it is one token?

Numbers

 3/12/91 Mar. 12, 1991

 55 B.C.

 B-52

 My PGP key is 324a3df234cb23e

 (800) 234-2333

 Often have embedded spaces

 Often, don’t index as text
 But often very useful: think about things like

looking up error codes/stacktraces on the web

 (One answer is using n-grams: Lecture 3)

 Will often index “meta-data” separately
 Creation date, format, etc.

Tokenization: language issues

 French
 L'ensemble → one token or two?

 L ? L’ ? Le ?

 Want l’ensemble to match with un ensemble

 German noun compounds are not
segmented
 Lebensversicherungsgesellschaftsangestellter

 ‘life insurance company employee’

 German retrieval systems benefit greatly from a
compound splitter module

Tokenization: language issues

 Chinese and Japanese have no spaces
between words:
 莎拉波娃现在居住在美国东南部的佛罗里达。

 Not always guaranteed a unique tokenization

 Further complicated in Japanese, with
multiple alphabets intermingled
 Dates/amounts in multiple formats

フォーチュン500社は情報不足のため時間あた$500K(約6,000万円)

Katakana Hiragana Kanji Romaji

End-user can express query entirely in hiragana!

Tokenization: language issues

 Arabic (or Hebrew) is basically written right to left, but
with certain items like numbers written left to right

 Words are separated, but letter forms within a word form
complex ligatures

 ← → ← → ← start

 ‘Algeria achieved its independence in 1962 after 132
years of French occupation.’

 With Unicode, the surface presentation is complex, but
the stored form is straightforward

Stop words

 With a stop list, you exclude from dictionary entirely the
commonest words. Intuition:

 They have little semantic content: the, a, and, to, be

 There are a lot of them: ~30% of postings for top 30 words

 But the trend is away from doing this:

 Good compression techniques (lecture 5) means the space for
including stopwords in a system is very small

 Good query optimization techniques mean you pay little at
query time for including stop words.

 You need them for:

 Phrase queries: “King of Denmark”

 Various song titles, etc.: “Let it be”, “To be or not to be”

 “Relational” queries: “flights to London”

Normalization

 Need to “normalize” terms in indexed text as
well as query terms into the same form
 We want to match U.S.A. and USA

 We most commonly implicitly define
equivalence classes of terms
 e.g., by deleting periods in a term

 Alternative is to do asymmetric expansion:
 Enter: window Search: window, windows

 Enter: windows Search: Windows, windows, window

 Enter: Windows Search: Windows

 Potentially more powerful, but less efficient

Normalization: other languages

 Accents: résumé vs. resume.

 Most important criterion:
 How are your users like to write their queries

for these words?

 Even in languages that standardly have
accents, users often may not type them

 German: Tuebingen vs. Tübingen
 Should be equivalent

Normalization: other languages

 Need to “normalize” indexed text as well as
query terms into the same form

 Character-level alphabet detection and
conversion
 Tokenization not separable from this.

 Sometimes ambiguous:

7月30日 vs. 7/30

Morgen will ich in MIT …

Case folding

 Reduce all letters to lower case
 exception: upper case in mid-sentence?

 e.g., General Motors

 Fed vs. fed

 SAIL vs. sail

 Often best to lower case everything, since
users will use lowercase regardless of ‘correct’
capitalization…

 Aug 2005 Google example:
 C.A.T. Cat Fanciers website not Caterpiller

Inc.

Thesauri and soundex

 Handle synonyms and homonyms
 Hand-constructed equivalence classes

 e.g., car = automobile
 color = colour

 Rewrite to form equivalence classes
 Index such equivalences

 When the document contains automobile,
index it under car as well (usually, also vice-
versa)

 Or expand query?
 When the query contains automobile, look

under car as well

Soundex

 Traditional class of heuristics to expand a
query into phonetic equivalents
 Language specific – mainly for names

 Invented for the US Census

 E.g., chebyshev → tchebycheff

 More on this in the next lecture

Lemmatization

 Reduce inflectional/variant forms to base
form

 E.g.,
 am, are, is → be

 car, cars, car's, cars' → car

 the boy's cars are different colors → the boy
car be different color

 Lemmatization implies doing “proper”
reduction to dictionary headword form

Stemming

 Reduce terms to their “roots” before
indexing

 “Stemming” suggest crude affix chopping
 language dependent

 e.g., automate(s), automatic, automation all
reduced to automat.

for example compressed
and compression are both
accepted as equivalent to
compress.

for exampl compress and
compress ar both accept
as equival to compress

Porter’s algorithm

 Commonest algorithm for stemming English
 Results suggest it’s at least as good as other

stemming options

 Conventions + 5 phases of reductions
 phases applied sequentially

 each phase consists of a set of commands

 sample convention: Of the rules in a
compound command, select the one that
applies to the longest suffix.

Typical rules in Porter

 sses → ss

 ies → i

 ational → ate

 tional → tion

 Weight of word sensitive rules

 (m>1) EMENT →
 replacement → replac

 cement → cement

Other stemmers

 Other stemmers exist, e.g., Lovins stemmer
http://www.comp.lancs.ac.uk/computing/research/stemming/general/lovins.htm

 Single-pass, longest suffix removal (about
250 rules)

 Full morphological analysis – at most
modest benefits for retrieval

 Do stemming and other normalizations help?
 English: very mixed results. Helps recall for some

queries but harms precision on others
 E.g., operative (dentistry) ⇒ oper

 Definitely useful for Spanish, German, Finnish, …

Language-specificity

 Many of the above features embody
transformations that are
 Language-specific and

 Often, application-specific

 These are “plug-in” addenda to the indexing
process

 Both open source and commercial plug-ins
are available for handling these

Dictionary entries – first cut

ensemble.french

時間.chinese

MIT.english

mit.german

guaranteed.english

entries.english

sometimes.english

tokenization.english

These may be
grouped by
language (or

not…).
More on this in
ranking/query

processing.

Word Frequency vs. Resolving
Power (from van Rijsbergen 79)

The most frequent words are not the most descriptive

Upper cut-off

Significant words

Words by rank order

Fr
eq

u
en

cy
 o

f
w

o
rd

s

Lower cut-off

Resolving power of
Significant words

Plotting Word Frequency by Rank

 Say for a text with 100 tokens

 Count
 How many tokens occur 1 time (50)

 How many tokens occur 2 times (20) …

 How many tokens occur 7 times (10) …

 How many tokens occur 12 times (1)

 How many tokens occur 14 times (1)

 So things that occur the most times have the
highest rank (rank 1).

 Things that occur the fewest times have the
lowest rank (rank n).

Rank Freq
1 37 system
2 32 knowledg
3 24 base
4 20 problem
5 18 abstract
6 15 model
7 15 languag
8 15 implem
9 13 reason
10 13 inform
11 11 expert
12 11 analysi
13 10 rule
14 10 program
15 10 oper
16 10 evalu
17 10 comput
18 10 case
19 9 gener
20 9 form

The Corresponding Zipf Curve

Faster postings merges:
Skip pointers/Skip lists

Recall basic merge

 Walk through the two postings
simultaneously, in time linear in the total
number of postings entries

128

31

2 4 8 41 48 64

1 2 3 8 11 17 21

Brutus

Caesar
2 8

If the list lengths are m and n, the merge takes O(m+n)
operations.

Can we do better?
Yes (if index isn’t changing too fast).

Augment postings with skip
pointers (at indexing time)

 Why?

 To skip postings that will not figure in the
search results.

 How?

 Where do we place skip pointers?

1282 4 8 41 48 64

311 2 3 8 11 17 21
3111

41 128

Query processing with skip
pointers

1282 4 8 41 48 64

311 2 3 8 11 17 21
3111

16 128

Suppose we’ve stepped through the lists until we
process 8 on each list. We match it and advance.

We then have 41 and 11 on the lower. 11 is smaller.

But the skip successor of 11 on the lower list is 31, so
we can skip ahead past the intervening postings.

Where do we place skips?

 Tradeoff:
 More skips → shorter skip spans ⇒ more

likely to skip. But lots of comparisons to skip
pointers.

 Fewer skips → few pointer comparison, but
then long skip spans ⇒ few successful skips.

Placing skips

 Simple heuristic: for postings of length L, use √L
evenly-spaced skip pointers.

 This ignores the distribution of query terms.

 Easy if the index is relatively static; harder if L
keeps changing because of updates.

 This definitely used to help; with modern
hardware it may not (Bahle et al. 2002)

 The I/O cost of loading a bigger postings list
can outweigh the gains from quicker in
memory merging!

Phrase queries and positional
indexes

Phrase queries

 Want to be able to answer queries such as
“stanford university” – as a phrase

 Thus the sentence “I went to university at
Stanford” is not a match.
 The concept of phrase queries has proven

easily understood by users; one of the few
“advanced search” ideas that works

 Many more queries are implicit phrase
queries

 For this, it no longer suffices to store only

<term : docs> entries

A first attempt: Biword indexes

 Index every consecutive pair of terms in the
text as a phrase

 For example the text “Friends, Romans,
Countrymen” would generate the biwords
 friends romans

 romans countrymen

 Each of these biwords is now a dictionary
term

 Two-word phrase query-processing is now
immediate.

Longer phrase queries

 Longer phrases are processed as we did with
wild-cards:

 stanford university palo alto can be
broken into the Boolean query on biwords:

stanford university AND university palo AND
palo alto

Without the docs, we cannot verify that the
docs matching the above Boolean query do
contain the phrase.

Can have false positives!

Extended biwords

 Parse the indexed text and perform part-of-speech-
tagging (POST).

 Bucket the terms into (say) Nouns (N) and
articles/prepositions (X).

 Now deem any string of terms of the form NX*N to
be an extended biword.
 Each such extended biword is now made a term in the

dictionary.

 Example: catcher in the rye
N X X N

 Query processing: parse it into N’s and X’s
 Segment query into enhanced biwords

 Look up index

Issues for biword indexes

 False positives, as noted before

 Index blowup due to bigger dictionary

 For extended biword index, parsing longer
queries into conjunctions:
 E.g., the query tangerine trees and

marmalade skies is parsed into

 tangerine trees AND trees and marmalade
AND marmalade skies

 Not standard solution (for all biwords)

Solution 2: Positional indexes

 In the postings, store, for each term, entries
of the form:
<term, number of docs containing term;

doc1: position1, position2 … ;

doc2: position1, position2 … ;

etc.>

Positional index example

 We use a merge algorithm recursively at the
document level

 But we now need to deal with more than just
equality

<be: 993427;
1: 7, 18, 33, 72, 86, 231;
2: 3, 149;
4: 17, 191, 291, 430, 434;
5: 363, 367, …>

Which of docs 1,2,4,5
could contain “to be

or not to be”?

Processing a phrase query

 Extract inverted index entries for each
distinct term: to, be, or, not.

 Merge their doc:position lists to enumerate
all positions with “to be or not to be”.

 to:

 2:1,17,74,222,551; 4:8,16,190,429,433;
7:13,23,191; ...

 be:

 1:17,19; 4:17,191,291,430,434;
5:14,19,101; ...

 Same general method for proximity searches

Proximity queries

 LIMIT! /3 STATUTE /3 FEDERAL /2 TORT
Here, /k means “within k words of”.

 Clearly, positional indexes can be used for
such queries; biword indexes cannot.

 Exercise: Adapt the linear merge of postings
to handle proximity queries. Can you make it
work for any value of k?
 This is a little tricky to do correctly and efficiently
 See Figure 2.12 of IIR
 There’s likely to be a problem on it!

Positional index size

 You can compress position values/offsets:
we’ll talk about that in lecture 5

 Nevertheless, a positional index expands
postings storage substantially

 Nevertheless, a positional index is now
standardly used because of the power and
usefulness of phrase and proximity
queries … whether used explicitly or
implicitly in a ranking retrieval system.

Positional index size

 Need an entry for each occurrence, not just
once per document

 Index size depends on average document
size
 Average web page has <1000 terms

 SEC filings, books, even some epic poems …
easily 100,000 terms

 Consider a term with frequency 0.1%

Why?

1001100,000

111000

Positional postingsPostingsDocument size

Rules of thumb

 A positional index is 2–4 as large as a non-
positional index

 Positional index size 35–50% of volume of
original text

 Caveat: all of this holds for “English-like”
languages

Combination schemes

 These two approaches can be profitably
combined

 For particular phrases (“Michael Jackson”,
“Britney Spears”) it is inefficient to keep on
merging positional postings lists

 Even more so for phrases like “The Who”

 Williams et al. (2004) evaluate a more
sophisticated mixed indexing scheme

 A typical web query mixture was executed in
¼ of the time of using just a positional index

 It required 26% more space than having a
positional index alone

Research Topics of IR

Intelligent Information Retrieval

Intelligent Information Retrieval (IIR)

Information
Retrieval

Machine
Learning

Adaptive
System

Some Issues in IIR

 Document Clustering

 Automatic Text Categorization

 Feature Selection

 Topic Detection and Tracking

 New Information Detection

Document Clustering

 Technique for analyzing structures and
relations in data

 No classes to be identified prior to process

 Intensive literature on
 medical data

 census and survey data

 literature citations

 document retrieval

Document Clustering

 Web browsing (“Scatter/Gather”)

 Taxonomy creation (Yahoo!)

 Term thesaurus development (WordNet)

 Query-log analysis on the web

 User grouping for email routing

 Summarization

Text Clustering

 Finds overall similarities among groups of
documents

 Finds overall similarities among groups of
tokens

 Picks out some themes, ignores others

Clustering as Document Ranking

 Cluster entire collection

 Find cluster centroid that best matches the
query

 This has been explored extensively
 it is expensive

 it doesn’t work well

Two Queries: Two Clusterings

AUTO, CAR, ELECTRIC AUTO, CAR, SAFETY

The main differences are the clusters that are central to the query

8 control drive accident …

25 battery california technology …

48 import j. rate honda toyota …

16 export international unit japan

3 service employee automatic …

6 control inventory integrate …

10 investigation washington …

12 study fuel death bag air …

61 sale domestic truck import …

11 japan export defect unite …

Clustering Multi-Dimensional
Document Space
(image from Wise et al 95)

Kohonen Feature Maps on Text
(from Chen et al., JASIS 49(7))

Co-citation analysis (From Garfield 98)

Co-citation analysis (From Garfield 98)

	�Biomedical Information Retrieval
	Major subjects for this lecture
	投影片編號 3
	Content Analysis
	Techniques for Content Analysis
	Text Processing
	Document Processing Steps
	Stemming and Morphological Analysis
	Recall basic indexing pipeline
	Parsing a document
	Initial stages of text processing
	Complications: Format/language
	Tokens and Terms
	Bag of Words
	Bag of Words
	投影片編號 16
	投影片編號 17
	投影片編號 18
	投影片編號 19
	投影片編號 20
	投影片編號 21
	Word embedding
	keras.layers.Embedding
	投影片編號 24
	投影片編號 25
	投影片編號 26
	投影片編號 27
	投影片編號 28
	投影片編號 29
	投影片編號 30
	投影片編號 31
	投影片編號 32
	投影片編號 33
	Word Embedding Choices
	Tokenization
	Tokenization
	Numbers
	Tokenization: language issues
	Tokenization: language issues
	Tokenization: language issues
	Stop words
	Normalization
	Normalization: other languages
	Normalization: other languages
	Case folding
	Thesauri and soundex
	Soundex
	Lemmatization
	Stemming
	Porter’s algorithm
	Typical rules in Porter
	Other stemmers
	Language-specificity
	Dictionary entries – first cut
	Word Frequency vs. Resolving Power (from van Rijsbergen 79)
	Plotting Word Frequency by Rank
	Rank Freq�1 37 system�2 32 knowledg�3 24 base�4 20 problem�5 18 abstract�6 15 model�7 15 languag�8 15 implem�9 13 reason�10 13 inform�11 11 expert�12 11 analysi�13 10 rule�14 10 program�15 10 oper�16 10 evalu�17 10 comput�18 10 case�19 9 gener�20 9 form
	Faster postings merges:�Skip pointers/Skip lists
	Recall basic merge
	Augment postings with skip pointers (at indexing time)
	Query processing with skip pointers
	Where do we place skips?
	Placing skips
	Phrase queries and positional indexes
	Phrase queries
	A first attempt: Biword indexes
	Longer phrase queries
	Extended biwords
	Issues for biword indexes
	Solution 2: Positional indexes
	Positional index example
	Processing a phrase query
	Proximity queries
	Positional index size
	Positional index size
	Rules of thumb
	Combination schemes
	Research Topics of IR
	投影片編號 79
	Intelligent Information Retrieval
	Intelligent Information Retrieval (IIR)
	Some Issues in IIR
	Document Clustering
	Document Clustering
	Text Clustering
	投影片編號 86
	Clustering as Document Ranking
	Two Queries: Two Clusterings
	Clustering Multi-Dimensional �Document Space�(image from Wise et al 95)
	投影片編號 90
	Co-citation analysis (From Garfield 98)
	Co-citation analysis (From Garfield 98)

