
Biomedical Information Retrieval

Lecture 2: Term vocabulary and 
posting lists



Major subjects for this lecture

 Preprocessing to form the 
“term vocabulary”

 Documents

 Tokenization

 What terms do we put in the index?



Information
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Content Analysis

 Automated Transformation of raw text into a 
form that represent some aspect(s) of its 
meaning

 Including, but not limited to:
 Automated Thesaurus Generation

 Phrase Detection

 Categorization

 Clustering

 Summarization



Techniques for Content 
Analysis
 Statistical

 Single Document

 Full Collection

 Linguistic
 Syntactic

 Semantic

 Pragmatic

 Knowledge-Based (Artificial Intelligence)

 Hybrid (Combinations)



Text Processing

 Standard Steps:
 Recognize document structure 

 titles, sections, paragraphs, etc.

 Break into tokens
 usually space and punctuation delineated

 special issues with Asian languages

 Stemming/morphological analysis

 Store in inverted index (to be discussed later)



Document Processing Steps



Stemming and Morphological Analysis

 Goal: “normalize” similar words

 Morphology (“form” of words)
 Inflectional Morphology

 E.g,. inflect verb endings and noun number

 Never change grammatical class

 dog, dogs

 tengo, tienes, tiene, tenemos, tienen

 Derivational Morphology 
 Derive one word from another, 

 Often change grammatical class

 build, building; health, healthy



Recall basic indexing pipeline

Tokenizer

Token stream. Friends Romans Countrymen
Linguistic 
modules

Modified tokens. friend roman countryman

Indexer

Inverted index.

friend

roman

countryman

2 4

2

13 16

1

Documents to
be indexed.

Friends, Romans, countrymen.



Parsing a document

 What format is it in?
 pdf/word/excel/html?

 What language is it in?

 What character set is in use?

Each of these is a classification problem, 
which we will study later in the course.

But these tasks are often done heuristically …



Initial stages of text processing

• Tokenization
– Cut character sequence into word tokens

• Deal with “John’s”, a state-of-the-art solution

• Normalization
– Map text and query term to same form

• You want U.S.A. and USA to match

• Stemming
– We may wish different forms of a root to match

• authorize, authorization

• Stop words
– We may omit very common words (or not)

• the, a, to, of



Complications: Format/language

 Documents being indexed can include docs 
from many different languages
 A single index may have to contain terms of 

several languages.
 Sometimes a document or its components 

can contain multiple languages/formats
 French email with a German pdf attachment.

 What is a unit document?
 A file?
 An email?  (Perhaps one of many in an mbox.)
 An email with 5 attachments?
 A group of files (PPT or LaTeX as HTML pages)



Tokens and Terms

字、詞、字串、符號、代碼…



Bag of Words

I love dogs I Love Dogs

Doc 
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1 1 1
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銀蘋果
對於這袋子
有多重要？
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WORD EMBEDDING



keras.layers.Embedding

1

passion
x: 0.119
y: 0.212
z: 0.010



• cat

• dog • goat

• hamster
• pig

• panda



Word2Vec

• cat
• dog

• goat

• hamster
• pig

• panda



Word2Vec
King

Man

Queen

Woman



“ The quick brown fox _____ over the lazy dog ”?
kicks
shots

throws
looks
jumps



“ The quick brown fox _____ over the lazy dog ”
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“ The quick brown fox _____ over the lazy dog ”

grammatical, semantical similarity



Word Embedding Choices

1. Learnable embedding

2. Word2Vec

3. GloVe

4. FastText



Tokenization

 Input: “Friends, Romans and Countrymen”

 Output: Tokens
 Friends

 Romans

 Countrymen

 Each such token is now a candidate for an 
index entry, after further processing
 Described below

 But what are valid tokens to emit?



Tokenization

 Issues in tokenization:
 Finland’s capital →

Finland? Finlands? Finland’s?

 Hewlett-Packard →
Hewlett and Packard as two tokens?
 state-of-the-art: break up hyphenated sequence.  

 co-education

 lowercase, lower-case, lower case ?
 It’s effective to get the user to put in possible hyphens

 San Francisco: one token or two?  How 
do you decide it is one token?



Numbers

 3/12/91 Mar. 12, 1991

 55 B.C.

 B-52

 My PGP key is 324a3df234cb23e

 (800) 234-2333

 Often have embedded spaces

 Often, don’t index as text
 But often very useful: think about things like 

looking up error codes/stacktraces on the web

 (One answer is using n-grams: Lecture 3)

 Will often index “meta-data” separately
 Creation date, format, etc.



Tokenization: language issues

 French
 L'ensemble → one token or two?

 L ? L’ ? Le ?

 Want l’ensemble to match with un ensemble

 German noun compounds are not 
segmented
 Lebensversicherungsgesellschaftsangestellter

 ‘life insurance company employee’

 German retrieval systems benefit greatly from a 
compound splitter module



Tokenization: language issues

 Chinese and Japanese have no spaces 
between words:
 莎拉波娃现在居住在美国东南部的佛罗里达。

 Not always guaranteed a unique tokenization

 Further complicated in Japanese, with 
multiple alphabets intermingled
 Dates/amounts in multiple formats

フォーチュン500社は情報不足のため時間あた$500K(約6,000万円)

Katakana Hiragana Kanji Romaji

End-user can express query entirely in hiragana!



Tokenization: language issues

 Arabic (or Hebrew) is basically written right to left, but 
with certain items like numbers written left to right

 Words are separated, but letter forms within a word form 
complex ligatures

 ← → ← → ← start

 ‘Algeria achieved its independence in 1962 after 132 
years of French occupation.’

 With Unicode, the surface presentation is complex, but 
the stored form is  straightforward



Stop words

 With a stop list, you exclude from dictionary entirely the 
commonest words. Intuition:

 They have little semantic content: the, a, and, to, be

 There are a lot of them: ~30% of postings for top 30 words

 But the trend is away from doing this:

 Good compression techniques (lecture 5) means the space for 
including stopwords in a system is very small

 Good query optimization techniques mean you pay little at 
query time for including stop words.

 You need them for:

 Phrase queries: “King of Denmark”

 Various song titles, etc.: “Let it be”, “To be or not to be”

 “Relational” queries: “flights to London”



Normalization

 Need to “normalize” terms in indexed text as 
well as query terms into the same form
 We want to match U.S.A. and USA

 We most commonly implicitly define 
equivalence classes of terms
 e.g., by deleting periods in a term

 Alternative is to do asymmetric expansion:
 Enter: window Search: window, windows

 Enter: windows Search: Windows, windows, window

 Enter: Windows Search: Windows

 Potentially more powerful, but less efficient



Normalization: other languages

 Accents: résumé vs. resume.

 Most important criterion:
 How are your users like to write their queries 

for these words?

 Even in languages that standardly have 
accents, users often may not type them

 German: Tuebingen vs. Tübingen
 Should be equivalent



Normalization: other languages

 Need to “normalize” indexed text as well as 
query terms into the same form

 Character-level alphabet detection and 
conversion
 Tokenization not separable from this.

 Sometimes ambiguous:

7月30日 vs. 7/30

Morgen will ich in MIT … 



Case folding

 Reduce all letters to lower case
 exception: upper case in mid-sentence?

 e.g., General Motors

 Fed vs. fed

 SAIL vs. sail

 Often best to lower case everything, since 
users will use lowercase regardless of ‘correct’ 
capitalization…

 Aug 2005 Google example:
 C.A.T.  Cat Fanciers website not Caterpiller 

Inc.



Thesauri and soundex

 Handle synonyms and homonyms
 Hand-constructed equivalence classes

 e.g., car = automobile
 color = colour

 Rewrite to form equivalence classes
 Index such equivalences

 When the document contains automobile, 
index it under car as well (usually, also vice-
versa)

 Or expand query?
 When the query contains automobile, look 

under car as well



Soundex

 Traditional class of heuristics to expand a 
query into phonetic equivalents
 Language specific – mainly for names

 Invented for the US Census

 E.g., chebyshev → tchebycheff

 More on this in the next lecture



Lemmatization

 Reduce inflectional/variant forms to base 
form

 E.g.,
 am, are, is → be

 car, cars, car's, cars' → car

 the boy's cars are different colors → the boy 
car be different color

 Lemmatization implies doing “proper” 
reduction to dictionary headword form



Stemming

 Reduce terms to their “roots” before 
indexing

 “Stemming” suggest crude affix chopping
 language dependent

 e.g., automate(s), automatic, automation all 
reduced to automat.

for example compressed 
and compression are both 
accepted as equivalent to 
compress.

for exampl compress and
compress ar both accept
as equival to compress



Porter’s algorithm

 Commonest algorithm for stemming English
 Results suggest it’s at least as good as other 

stemming options

 Conventions + 5 phases of reductions
 phases applied sequentially

 each phase consists of a set of commands

 sample convention: Of the rules in a 
compound command, select the one that 
applies to the longest suffix.



Typical rules in Porter

 sses → ss

 ies → i

 ational → ate

 tional → tion

 Weight of word sensitive rules

 (m>1) EMENT →
 replacement → replac

 cement → cement



Other stemmers

 Other stemmers exist, e.g., Lovins stemmer 
http://www.comp.lancs.ac.uk/computing/research/stemming/general/lovins.htm

 Single-pass, longest suffix removal (about 
250 rules)

 Full morphological analysis – at most 
modest benefits for retrieval

 Do stemming and other normalizations help?
 English: very mixed results. Helps recall for some 

queries but harms precision on others
 E.g., operative (dentistry) ⇒ oper

 Definitely useful for Spanish, German, Finnish, …



Language-specificity

 Many of the above features embody 
transformations that are
 Language-specific and

 Often, application-specific

 These are “plug-in” addenda to the indexing 
process

 Both open source and commercial plug-ins 
are available for handling these



Dictionary entries – first cut

ensemble.french

時間.chinese

MIT.english

mit.german

guaranteed.english

entries.english

sometimes.english

tokenization.english

These may be 
grouped by 
language (or 

not…).  
More on this in 
ranking/query 

processing.



Word Frequency vs. Resolving 
Power  (from van Rijsbergen 79)

The most frequent words are not the most descriptive
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Plotting Word Frequency by Rank

 Say for a text with 100 tokens

 Count
 How many tokens occur 1 time (50)

 How many tokens occur 2 times (20) …

 How many tokens occur 7 times (10) … 

 How many tokens occur 12 times (1)

 How many tokens occur 14 times (1)

 So things that occur the most times have the 
highest rank (rank 1).

 Things that occur the fewest times have the 
lowest rank (rank n).



Rank  Freq
1        37      system
2        32      knowledg
3        24      base
4        20      problem
5        18      abstract
6        15      model
7        15      languag
8        15      implem
9        13      reason
10       13      inform
11       11      expert
12       11      analysi
13       10      rule
14       10      program
15       10      oper
16       10      evalu
17       10      comput
18       10      case
19       9       gener
20       9       form

The Corresponding Zipf Curve



Faster postings merges:
Skip pointers/Skip lists



Recall basic merge

 Walk through the two postings 
simultaneously, in time linear in the total 
number of postings entries

128

31

2 4 8 41 48 64

1 2 3 8 11 17 21

Brutus

Caesar
2 8

If the list lengths are m and n, the merge takes O(m+n)
operations.

Can we do better?
Yes (if index isn’t changing too fast).



Augment postings with skip 
pointers (at indexing time)

 Why?

 To skip postings that will not figure in the 
search results.

 How?

 Where do we place skip pointers?

1282 4 8 41 48 64

311 2 3 8 11 17 21
3111

41 128



Query processing with skip 
pointers

1282 4 8 41 48 64

311 2 3 8 11 17 21
3111

16 128

Suppose we’ve stepped through the lists until we 
process 8 on each list. We match it and advance.

We then have 41 and 11 on the lower.  11 is smaller.

But the skip successor of 11 on the lower list is 31, so
we can skip ahead past the intervening postings.



Where do we place skips?

 Tradeoff:
 More skips → shorter skip spans ⇒ more 

likely to skip.  But lots of comparisons to skip 
pointers.

 Fewer skips → few pointer comparison, but 
then long skip spans ⇒ few successful skips.



Placing skips

 Simple heuristic: for postings of length L, use √L
evenly-spaced skip pointers.

 This ignores the distribution of query terms.

 Easy if the index is relatively static; harder if L
keeps changing because of updates.

 This definitely used to help; with modern 
hardware it may not (Bahle et al. 2002)

 The I/O cost of loading a bigger postings list 
can outweigh the gains from quicker in 
memory merging!



Phrase queries and positional 
indexes



Phrase queries

 Want to be able to answer queries such as 
“stanford university” – as a phrase

 Thus the sentence “I went to university at 
Stanford” is not a match. 
 The concept of phrase queries has proven 

easily understood by users; one of the few 
“advanced search” ideas that works

 Many more queries are implicit phrase 
queries

 For this, it no longer suffices to store only

<term : docs> entries



A first attempt: Biword indexes

 Index every consecutive pair of terms in the 
text as a phrase

 For example the text “Friends, Romans, 
Countrymen” would generate the biwords
 friends romans

 romans countrymen

 Each of these biwords is now a dictionary 
term

 Two-word phrase query-processing is now 
immediate.



Longer phrase queries

 Longer phrases are processed as we did with 
wild-cards:

 stanford university palo alto can be 
broken into the Boolean query on biwords:

stanford university AND university palo AND
palo alto

Without the docs, we cannot verify that the 
docs matching the above Boolean query do 
contain the phrase.

Can have false positives!



Extended biwords

 Parse the indexed text and perform part-of-speech-
tagging (POST).

 Bucket the terms into (say) Nouns (N) and 
articles/prepositions (X).

 Now deem any string of terms of the form NX*N to 
be an extended biword.
 Each such extended biword is now made a term in the 

dictionary.

 Example:  catcher in the rye
N           X   X    N

 Query processing: parse it into N’s and X’s
 Segment query into enhanced biwords

 Look up index



Issues for biword indexes

 False positives, as noted before

 Index blowup due to bigger dictionary

 For extended biword index, parsing longer 
queries into conjunctions:
 E.g., the query tangerine trees and 

marmalade skies is parsed into

 tangerine trees AND trees and marmalade 
AND marmalade skies

 Not standard solution (for all biwords)



Solution 2: Positional indexes

 In the postings, store, for each term, entries 
of the form:
<term, number of docs containing term;

doc1: position1, position2 … ;

doc2: position1, position2 … ;

etc.>



Positional index example

 We use a merge algorithm recursively at the 
document level

 But we now need to deal with more than just 
equality

<be: 993427;
1: 7, 18, 33, 72, 86, 231;
2: 3, 149;
4: 17, 191, 291, 430, 434;
5: 363, 367, …>

Which of docs 1,2,4,5
could contain “to be

or not to be”?



Processing a phrase query

 Extract inverted index entries for each 
distinct term: to, be, or, not.

 Merge their doc:position lists to enumerate 
all positions with “to be or not to be”.

 to: 

 2:1,17,74,222,551; 4:8,16,190,429,433;
7:13,23,191; ...

 be:  

 1:17,19; 4:17,191,291,430,434;
5:14,19,101; ...

 Same general method for proximity searches



Proximity queries

 LIMIT! /3 STATUTE /3 FEDERAL /2 TORT 
Here, /k means “within k words of”.

 Clearly, positional indexes can be used for 
such queries; biword indexes cannot.

 Exercise: Adapt the linear merge of postings 
to handle proximity queries.  Can you make it 
work for any value of k?
 This is a little tricky to do correctly and efficiently
 See Figure 2.12 of IIR
 There’s likely to be a problem on it!



Positional index size

 You can compress position values/offsets: 
we’ll talk about that in lecture 5 

 Nevertheless, a positional index expands 
postings storage substantially

 Nevertheless, a positional index is now 
standardly used because of the power and 
usefulness of phrase and proximity 
queries … whether used explicitly or 
implicitly in a ranking retrieval system.



Positional index size

 Need an entry for each occurrence, not just 
once per document

 Index size depends on average document 
size
 Average web page has <1000 terms

 SEC filings, books, even some epic poems … 
easily 100,000 terms

 Consider a term with frequency 0.1%

Why?

1001100,000

111000

Positional postingsPostingsDocument size



Rules of thumb

 A positional index is 2–4 as large as a non-
positional index

 Positional index size 35–50% of volume of 
original text

 Caveat: all of this holds for “English-like” 
languages



Combination schemes

 These two approaches can be profitably 
combined

 For particular phrases (“Michael Jackson”, 
“Britney Spears”) it is inefficient to keep on 
merging positional postings lists

 Even more so for phrases like “The Who”

 Williams et al. (2004) evaluate a more 
sophisticated mixed indexing scheme

 A typical web query mixture was executed in 
¼ of the time of using just a positional index

 It required 26% more space than having a 
positional index alone



Research Topics of IR





Intelligent Information Retrieval 



Intelligent Information Retrieval (IIR)

Information
Retrieval

Machine
Learning

Adaptive 
System



Some Issues in IIR

 Document Clustering

 Automatic Text Categorization

 Feature Selection

 Topic Detection and Tracking

 New Information Detection



Document Clustering

 Technique for analyzing structures and 
relations in data

 No classes to be identified prior to process

 Intensive literature on
 medical data

 census and survey data

 literature citations

 document retrieval



Document Clustering

 Web browsing (“Scatter/Gather”)

 Taxonomy creation (Yahoo! )

 Term thesaurus development (WordNet)

 Query-log analysis on the web

 User grouping for email routing

 Summarization



Text Clustering

 Finds overall similarities among groups of 
documents

 Finds overall similarities among groups of 
tokens

 Picks out some themes, ignores others





Clustering as Document Ranking

 Cluster entire collection

 Find cluster centroid that best matches the 
query

 This has been explored extensively
 it is expensive

 it doesn’t work well



Two Queries: Two Clusterings

AUTO, CAR, ELECTRIC AUTO, CAR, SAFETY

The main differences are the clusters that are central to the query

8 control drive accident … 

25  battery california technology … 

48  import j. rate honda toyota … 

16  export international unit japan 

3  service employee automatic … 

6 control inventory integrate …

10  investigation washington …

12  study fuel death bag air … 

61  sale domestic truck import … 

11  japan export defect unite …



Clustering Multi-Dimensional 
Document Space
(image from Wise et al 95)



Kohonen Feature Maps on Text
(from Chen et al., JASIS 49(7))



Co-citation analysis (From Garfield 98)



Co-citation analysis (From Garfield 98)
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