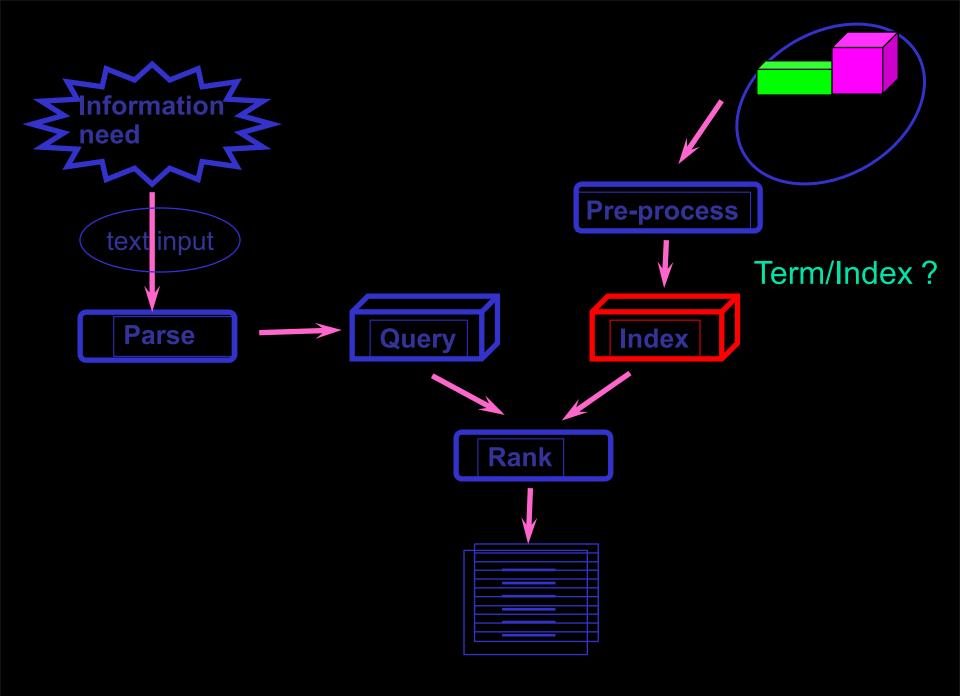
Biomedical Information Retrieval

Lecture 2: Term vocabulary and posting lists

Major subjects for this lecture

Preprocessing to form the "term vocabulary"

- Documents
- Tokenization
- What *terms* do we put in the index?



Content Analysis

- Automated Transformation of raw text into a form that represent some aspect(s) of its meaning
- Including, but not limited to:
 - Automated Thesaurus Generation
 - Phrase Detection
 - Categorization
 - Clustering
 - Summarization

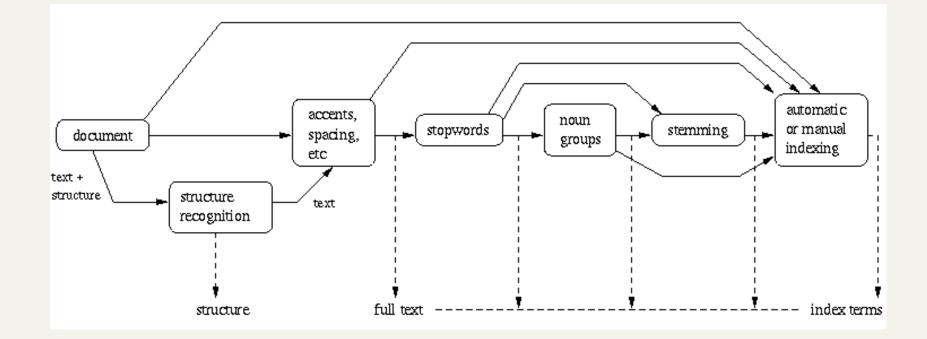
Techniques for Content Analysis

- Statistical
 - Single Document
 - Full Collection
- Linguistic
 - Syntactic
 - Semantic
 - Pragmatic
- Knowledge-Based (Artificial Intelligence)
- Hybrid (Combinations)

Text Processing

- Standard Steps:
 - Recognize document structure
 - titles, sections, paragraphs, etc.
 - Break into tokens
 - usually space and punctuation delineated
 - special issues with Asian languages
 - Stemming/morphological analysis
 - Store in inverted index (to be discussed later)

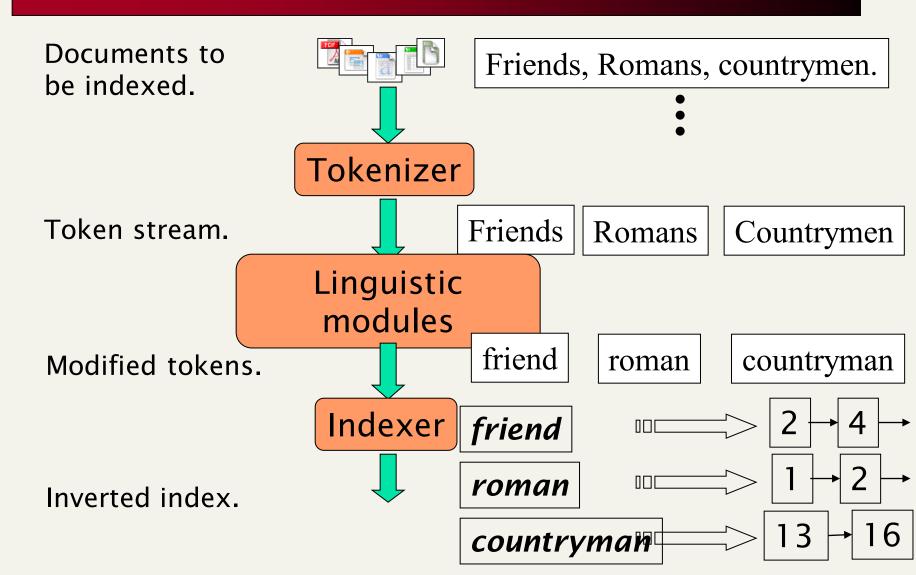
Document Processing Steps



Stemming and Morphological Analysis

- Goal: "normalize" similar words
- Morphology ("form" of words)
 - Inflectional Morphology
 - E.g,. inflect verb endings and noun number
 - Never change grammatical class
 - dog, dogs
 - tengo, tienes, tiene, tenemos, tienen
 - Derivational Morphology
 - Derive one word from another,
 - Often change grammatical class
 - build, building; health, healthy

Recall basic indexing pipeline



Parsing a document

What format is it in?

- pdf/word/excel/html?
- What language is it in?
- What character set is in use?

Each of these is a classification problem, which we will study later in the course.

But these tasks are often done heuristically ...

Initial stages of text processing

- Tokenization
 - Cut character sequence into word tokens
 - Deal with "John's", a state-of-the-art solution
- Normalization
 - Map text and query term to same form
 - You want **U.S.A.** and **USA** to match
- Stemming
 - We may wish different forms of a root to match
 - authorize, authorization
- Stop words
 - We may omit very common words (or not)
 - the, a, to, of

Complications: Format/language

- Documents being indexed can include docs from many different languages
 - A single index may have to contain terms of several languages.
- Sometimes a document or its components can contain multiple languages/formats
 - French email with a German pdf attachment.
- What is a unit document?
 - A file?
 - An email? (Perhaps one of many in an mbox.)
 - An email with 5 attachments?
 - A group of files (PPT or LaTeX as HTML pages)

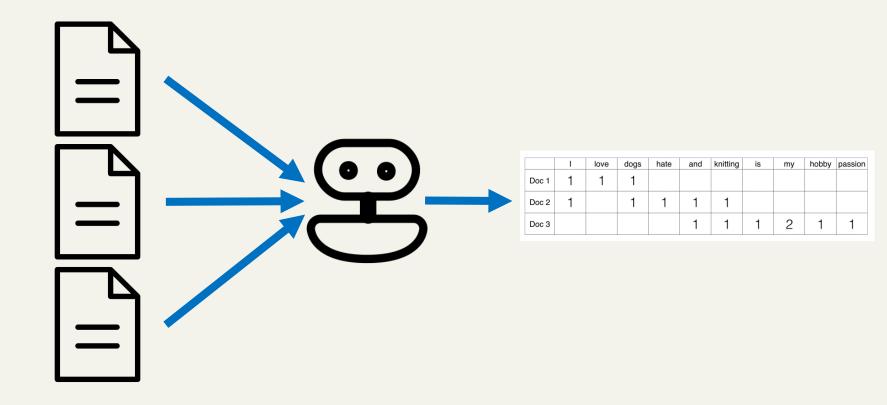
Tokens and Terms

字、詞、字串、符號、代碼...

Bag of Words

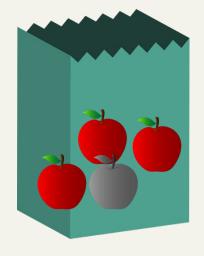
I love dogs \rightarrow \bigcirc \bigcirc 1 Love Dogs Doc 1 1 1 1

Bag of Words

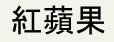


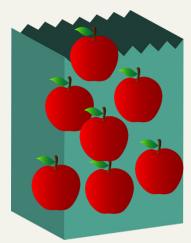
	I	love	dogs	hate	and	knitting	is	my	hobby	passion
Doc 1	1	1	1							
Doc 2	1		1	1	5	1				
Doc 3					1	1	1	2	1	1

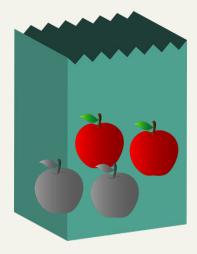
T

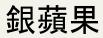


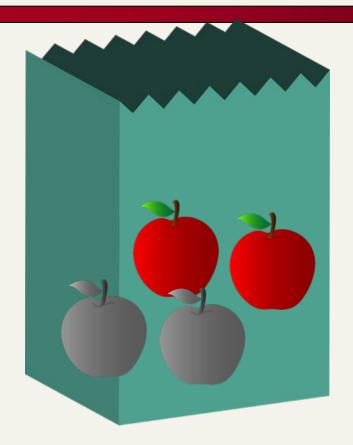
金蘋果





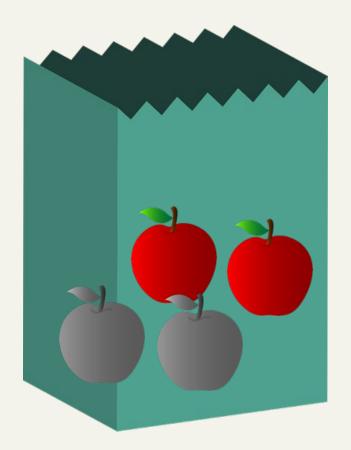






銀蘋果 對於這袋子 有多重要?



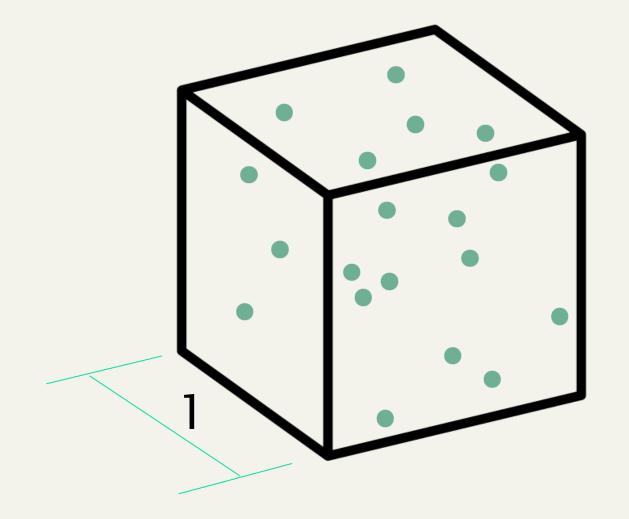


$$w_{x,y} = tf_{x,y} \times log\left(\frac{N}{df_x}\right)$$

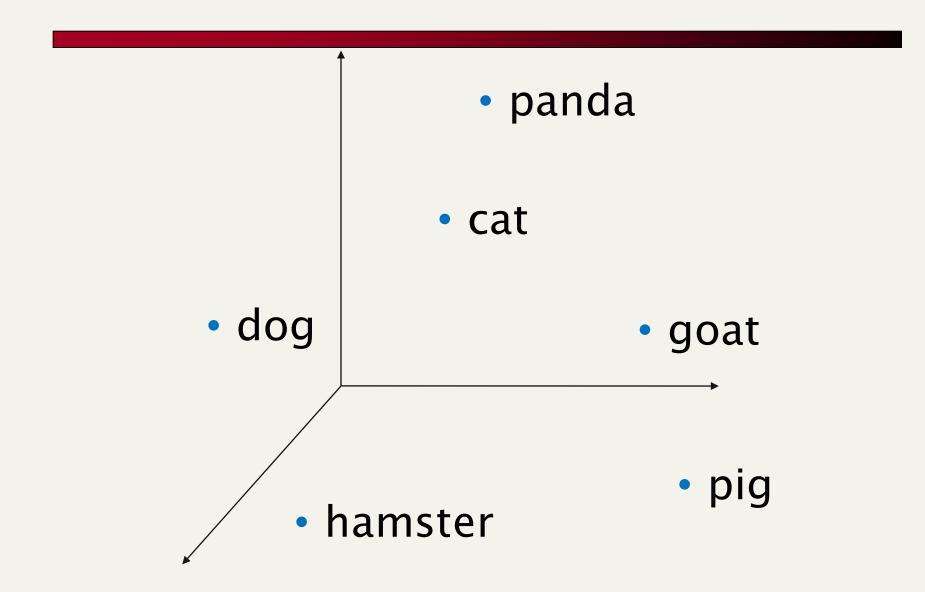
TF-IDF Term **x** within document **y** $tf_{x,y} = frequency of x in y$ $df_x = number of documents containing x$ N = total number of documents

WORD EMBEDDING

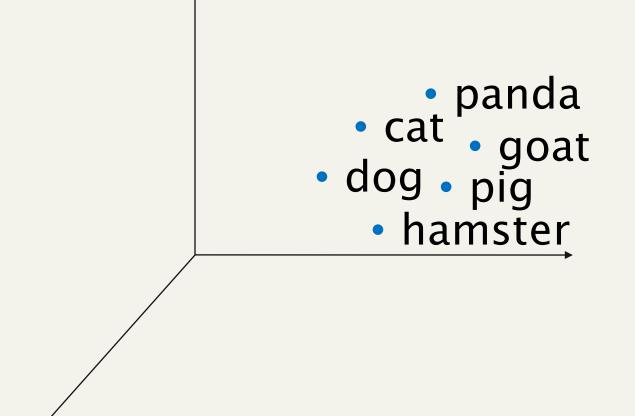
keras.layers.Embedding



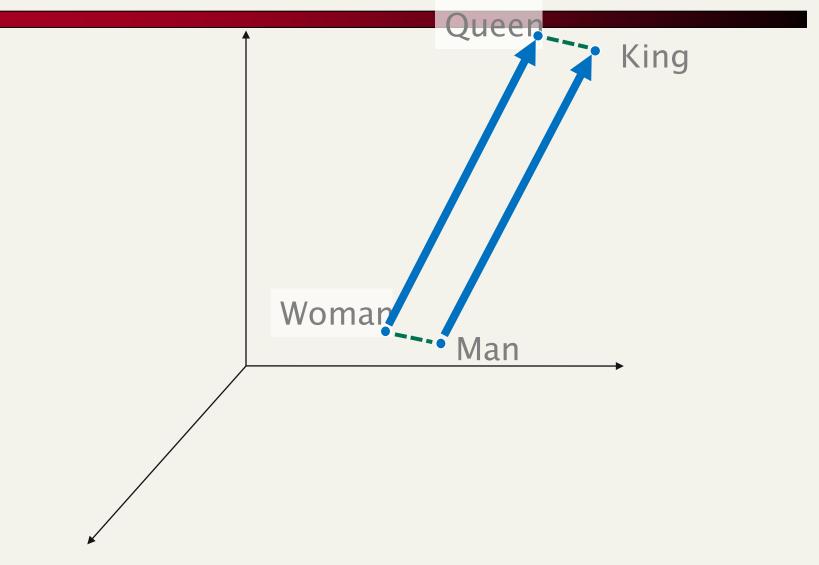
passion x: 0.119 y: 0.212 z: 0.010



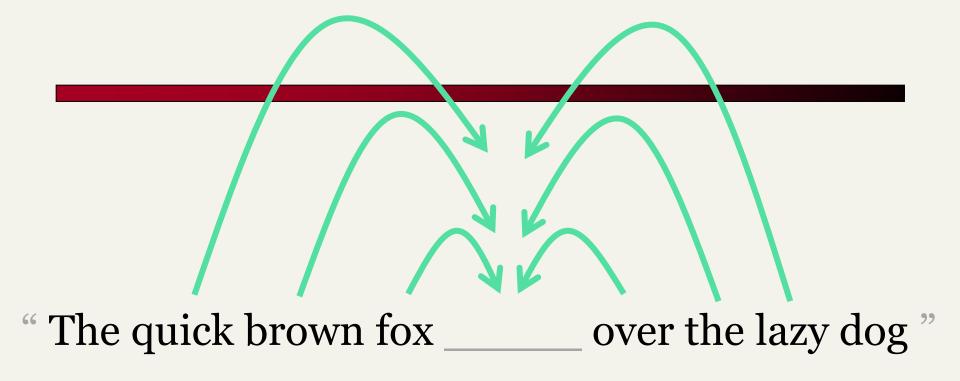
Word2Vec

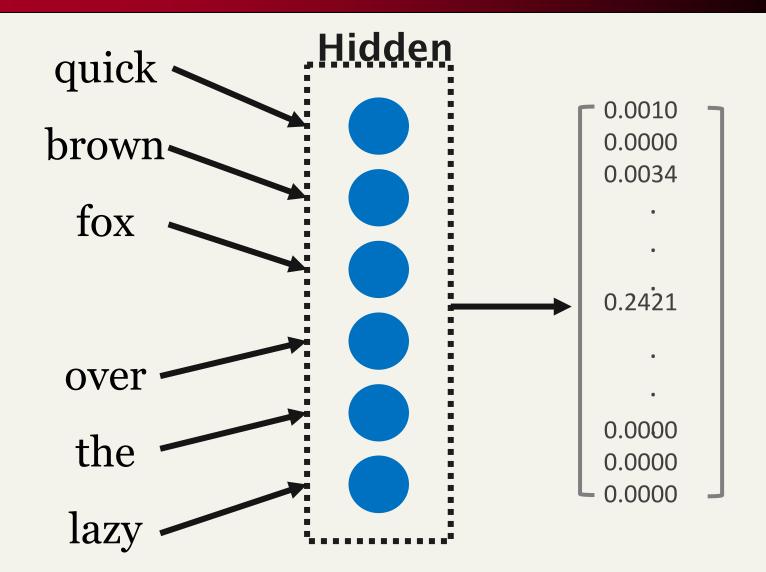


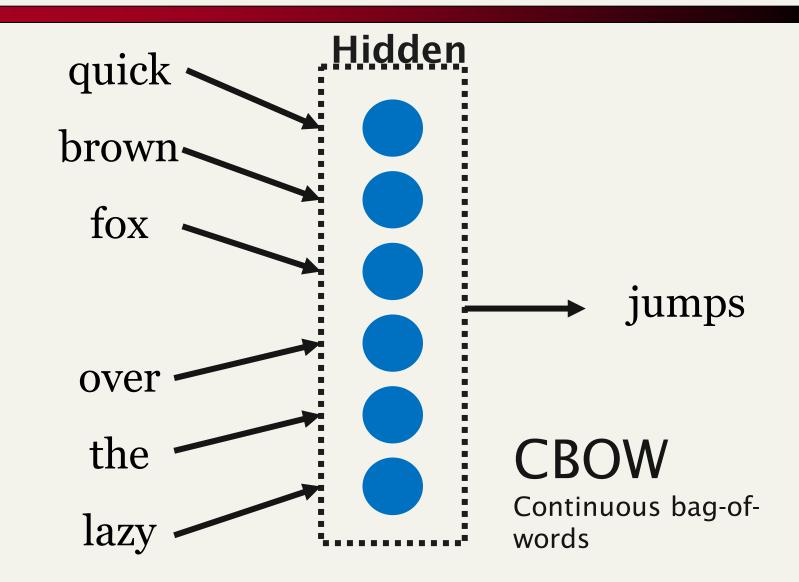
Word2Vec

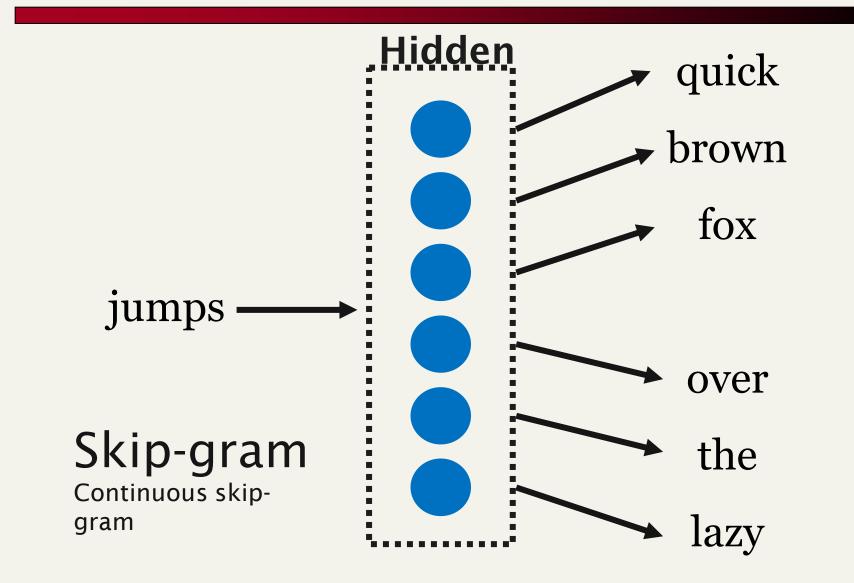


" The quick brown fox _____ over the lazy dog "









Dimensiabilito,olidination

0.0010 0.0000 0.0034 . • 0.2421 . . 0.0000 0.0000 0.0000

" The quick brown fox _____ over the lazy dog "

grammatical, semantical similarity

Word Embedding Choices

- 1. Learnable embedding
- 2. Word2Vec
- 3. GloVe
- 4. FastText

Tokenization

- Input: "Friends, Romans and Countrymen"
- Output: Tokens
 - Friends
 - Romans
 - Countrymen
- Each such token is now a candidate for an index entry, after <u>further processing</u>
 - Described below
- But what are valid tokens to emit?

Tokenization

Issues in tokenization:

- Finland's capital \rightarrow
 - Finland? Finlands? Finland's?
- Hewlett-Packard → Hewlett and Packard as two tokens?
 - state-of-the-art: break up hyphenated sequence.
 - co-education
 - *Iowercase*, *Iower-case*, *Iower case*?
 - It's effective to get the user to put in possible hyphens
- San Francisco: one token or two? How do you decide it is one token?

Numbers

- *3/12/91 Mar.* 12, 1991
- **55 B.C.**
- **B**-52
- My PGP key is 324a3df234cb23e
- (800) 234-2333
 - Often have embedded spaces
 - Often, don't index as text
 - But often very useful: think about things like looking up error codes/stacktraces on the web
 - (One answer is using n-grams: Lecture 3)
 - Will often index "meta-data" separately
 - Creation date, format, etc.

Tokenization: language issues

- French
 - *L'ensemble* \rightarrow one token or two?
 - *L*? *L*'? *Le*?
 - Want *l'ensemble* to match with *un ensemble*
- German noun compounds are not segmented
 - Lebensversicherungsgesellschaftsangestellter
 - 'life insurance company employee'
 - German retrieval systems benefit greatly from a compound splitter module

Tokenization: language issues

- Chinese and Japanese have no spaces between words:
 - 莎拉波娃现在居住在美国东南部的佛罗里达。
 - Not always guaranteed a unique tokenization
- Further complicated in Japanese, with multiple alphabets intermingled
 - Dates/amounts in multiple formats

End-user can express query entirely in hiragana!

Tokenization: language issues

- Arabic (or Hebrew) is basically written right to left, but with certain items like numbers written left to right
- Words are separated, but letter forms within a word form complex ligatures

استقلت الجزائر في سنة 1962 بعد 132 عاما من الاحتلال الفرنسي.

 $\leftarrow \rightarrow \quad \leftarrow \rightarrow$

 \leftarrow start

- 'Algeria achieved its independence in 1962 after 132 years of French occupation.'
- With Unicode, the surface presentation is complex, but the stored form is straightforward

Stop words

- With a stop list, you exclude from dictionary entirely the commonest words. Intuition:
 - They have little semantic content: the, a, and, to, be
 - There are a lot of them: ~30% of postings for top 30 words
- But the trend is away from doing this:
 - Good compression techniques (lecture 5) means the space for including stopwords in a system is very small
 - Good query optimization techniques mean you pay little at query time for including stop words.
 - You need them for:
 - Phrase queries: "King of Denmark"
 - Various song titles, etc.: "Let it be", "To be or not to be"
 - "Relational" queries: "flights to London"

Normalization

- Need to "normalize" terms in indexed text as well as query terms into the same form
 - We want to match U.S.A. and USA
- We most commonly implicitly define equivalence classes of terms
 - e.g., by deleting periods in a term
- Alternative is to do asymmetric expansion:
 - Enter: window Search: window, windows
 - Enter: windows Search: Windows, windows, window
 - Enter: *Windows* Search: *Windows*
- Potentially more powerful, but less efficient

Normalization: other languages

- Accents: résumé vs. resume.
- Most important criterion:
 - How are your users like to write their queries for these words?
- Even in languages that standardly have accents, users often may not type them
- German: *Tuebingen* vs. *Tübingen*
 - Should be equivalent

Normalization: other languages

 Need to "normalize" indexed text as well as query terms into the same form

7月30日vs. 7/30

- Character-level alphabet detection and conversion
 - Tokenization not separable from this.
 - Sometimes ambiguous:

Morgen will ich in MIT ...

Case folding

- Reduce all letters to lower case
 - exception: upper case in mid-sentence?
 - e.g., General Motors
 - Fed vs. fed
 - SAIL vs. sail
 - Often best to lower case everything, since users will use lowercase regardless of 'correct' capitalization...
- Aug 2005 Google example:
 - C.A.T. → Cat Fanciers website not Caterpiller Inc.

Thesauri and soundex

- Handle synonyms and homonyms
 - Hand-constructed equivalence classes
 - e.g., car = automobile
 - color = colour
- Rewrite to form equivalence classes
- Index such equivalences
 - When the document contains *automobile*, index it under *car* as well (usually, also viceversa)
- Or expand query?
 - When the query contains *automobile*, look under *car* as well

Soundex

- Traditional class of heuristics to expand a query into phonetic equivalents
 - Language specific mainly for names
 - Invented for the US Census
 - E.g., *chebyshev* → *tchebycheff*
- More on this in the next lecture

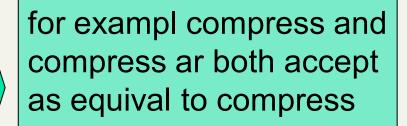
Lemmatization

- Reduce inflectional/variant forms to base form
- E.g.,
 - am, are, $is \rightarrow be$
 - car, cars, car's, cars' \rightarrow car
- the boy's cars are different colors \rightarrow the boy car be different color
- Lemmatization implies doing "proper" reduction to dictionary headword form

Stemming

- Reduce terms to their "roots" before indexing
- "Stemming" suggest crude affix chopping
 - language dependent
 - e.g., *automate(s), automatic, automation* all reduced to *automat*.

for example compressed and compression are both accepted as equivalent to compress.



Porter's algorithm

- Commonest algorithm for stemming English
 - Results suggest it's at least as good as other stemming options
- Conventions + 5 phases of reductions
 - phases applied sequentially
 - each phase consists of a set of commands
 - sample convention: Of the rules in a compound command, select the one that applies to the longest suffix.

Typical rules in Porter

- $sses \rightarrow ss$
- ies \rightarrow i
- $ational \rightarrow ate$
- $tional \rightarrow tion$
- Weight of word sensitive rules
- $(m>1) EMENT \rightarrow$
 - $replacement \rightarrow replac$
 - cement \rightarrow cement

Other stemmers

- Other stemmers exist, e.g., Lovins stemmer http://www.comp.lancs.ac.uk/computing/research/stemming/general/lovins.htm
 - Single-pass, longest suffix removal (about 250 rules)
- Full morphological analysis at most modest benefits for retrieval
- Do stemming and other normalizations help?
 - English: very mixed results. Helps recall for some queries but harms precision on others

■ E.g., operative (dentistry) ⇒ oper

Definitely useful for Spanish, German, Finnish, ...

Language-specificity

- Many of the above features embody transformations that are
 - Language-specific and
 - Often, application-specific
- These are "plug-in" addenda to the indexing process
- Both open source and commercial plug-ins are available for handling these

Dictionary entries - first cut

ensemble.french

時間.chinese

MIT.english

mit.german

guaranteed.english

entries.english

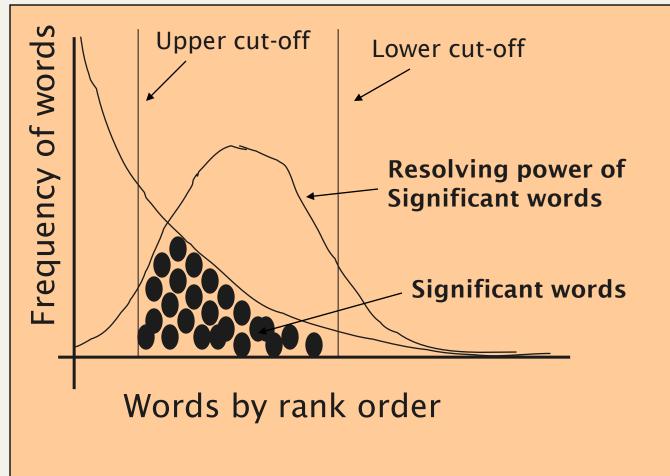
sometimes.english

tokenization.english

These may be grouped by language (or not...). More on this in ranking/query processing.

Word Frequency vs. Resolving Power (from van Rijsbergen 79)

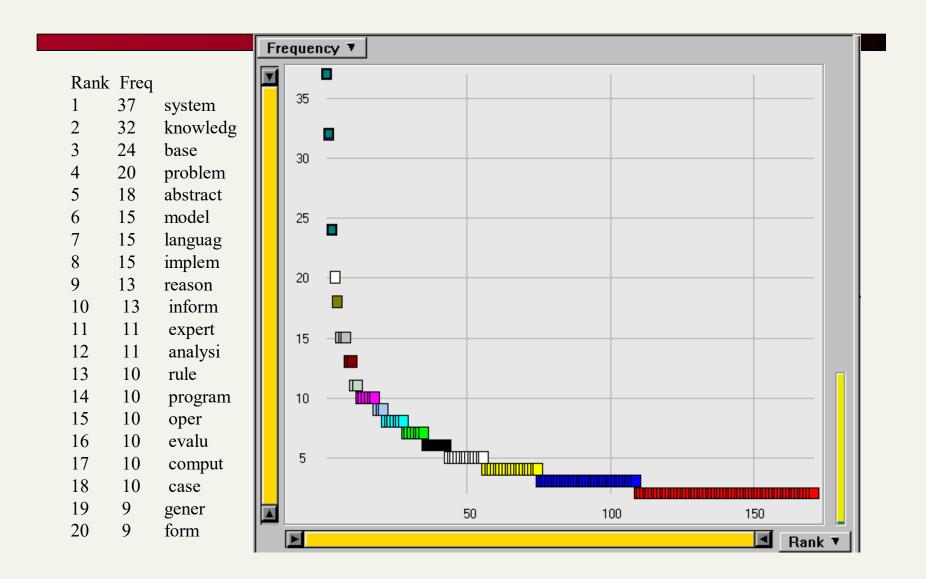
The most frequent words are not the most descriptive



Plotting Word Frequency by Rank

- Say for a text with 100 tokens
- Count
 - How many tokens occur 1 time (50)
 - How many tokens occur 2 times (20) ...
 - How many tokens occur 7 times (10) ...
 - How many tokens occur 12 times (1)
 - How many tokens occur 14 times (1)
- So things that occur the most times have the highest rank (rank 1).
- Things that occur the fewest times have the lowest rank (rank n).

The Corresponding Zipf Curve



Faster postings merges: Skip pointers/Skip lists

Recall basic merge

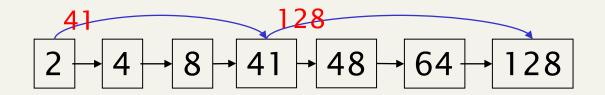
 Walk through the two postings simultaneously, in time linear in the total number of postings entries

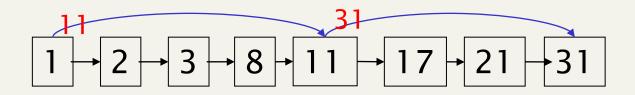
$$2 \rightarrow 8 \qquad \qquad 2 \rightarrow 4 \rightarrow 8 \rightarrow 41 \rightarrow 48 \rightarrow 64 \rightarrow 128 \quad Brutus$$
$$1 \rightarrow 2 \rightarrow 3 \rightarrow 8 \rightarrow 11 \rightarrow 17 \rightarrow 21 \rightarrow 31 \quad Caesar$$

If the list lengths are m and n, the merge takes O(m+n) operations.

Can we do better? Yes (if index isn't changing too fast).

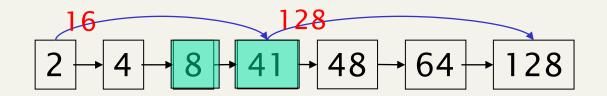
Augment postings with skip pointers (at indexing time)

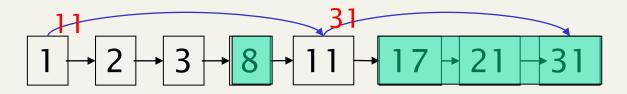




- Why?
- <u>To skip postings that will not figure in the</u> <u>search results.</u>
- How?
- Where do we place skip pointers?

Query processing with skip pointers





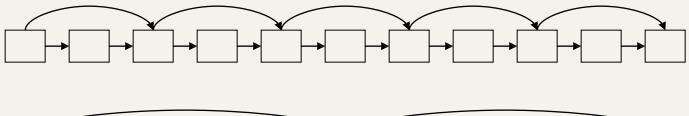
Suppose we've stepped through the lists until we process 8 on each list. We match it and advance.

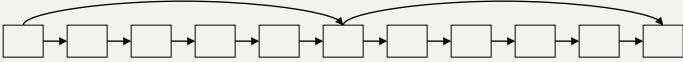
We then have **41** and **11** on the lower. **11** is smaller.

But the skip successor of 11 on the lower list is 31, so we can skip ahead past the intervening postings.

Where do we place skips?

- Tradeoff:
 - More skips → shorter skip spans ⇒ more likely to skip. But lots of comparisons to skip pointers.
 - Fewer skips → few pointer comparison, but then long skip spans ⇒ few successful skips.





Placing skips

- Simple heuristic: for postings of length *L*, use \sqrt{L} evenly-spaced skip pointers.
- This ignores the distribution of query terms.
- Easy if the index is relatively static; harder if L keeps changing because of updates.
- This definitely used to help; with modern hardware it may not (Bahle et al. 2002)
 - The I/O cost of loading a bigger postings list can outweigh the gains from quicker in memory merging!

Phrase queries and positional indexes

Phrase queries

- Want to be able to answer queries such as "stanford university" – as a phrase
- Thus the sentence "I went to university at Stanford" is not a match.
 - The concept of phrase queries has proven easily understood by users; one of the few "advanced search" ideas that works
 - Many more queries are *implicit phrase* queries
- For this, it no longer suffices to store only <term : docs> entries

A first attempt: Biword indexes

- Index every consecutive pair of terms in the text as a phrase
- For example the text "Friends, Romans, Countrymen" would generate the biwords
 - friends romans
 - romans countrymen
- Each of these biwords is now a dictionary term
- Two-word phrase query-processing is now immediate.

Longer phrase queries

- Longer phrases are processed as we did with wild-cards:
- stanford university palo alto can be broken into the Boolean query on biwords:
 stanford university AND university palo AND palo alto

Without the docs, we cannot verify that the docs matching the above Boolean query do contain the phrase.

Can have false positives!

Extended biwords

- Parse the indexed text and perform part-of-speechtagging (POST).
- Bucket the terms into (say) Nouns (N) and articles/prepositions (X).
- Now deem any string of terms of the form NX*N to be an <u>extended biword</u>.
 - Each such extended biword is now made a term in the dictionary.
- Example: catcher in the rye

N X X N

- Query processing: parse it into N's and X's
 - Segment query into enhanced biwords
 - Look up index

Issues for biword indexes

- False positives, as noted before
- Index blowup due to bigger dictionary
- For extended biword index, parsing longer queries into conjunctions:
 - E.g., the query tangerine trees and marmalade skies is parsed into
 - tangerine trees AND trees and marmalade AND marmalade skies
- Not standard solution (for all biwords)

Solution 2: Positional indexes

- In the postings, store, for each *term*, entries of the form:
 - <*term,* number of docs containing *term*;
 - doc1: position1, position2 ... ;
 - doc2: position1, position2 ... ;

etc.>

Positional index example

- We use a merge algorithm recursively at the document level
- But we now need to deal with more than just equality

Processing a phrase query

- Extract inverted index entries for each distinct term: *to, be, or, not.*
- Merge their *doc:position* lists to enumerate all positions with "*to be or not to be*".
 - **to**:
 - 2:1,17,74,222,551; 4:8,16,190,429,433; 7:13,23,191; ...
 - **be**:
 - *1*:17,19; *4*:17,191,291,430,434; 5:14,19,101; ...
- Same general method for proximity searches

Proximity queries

- LIMIT! /3 STATUTE /3 FEDERAL /2 TORT Here, /k means "within k words of".
- Clearly, positional indexes can be used for such queries; biword indexes cannot.
- Exercise: Adapt the linear merge of postings to handle proximity queries. Can you make it work for any value of k?
 - This is a little tricky to do correctly and efficiently
 - See Figure 2.12 of IIR
 - There's likely to be a problem on it!

Positional index size

- You can compress position values/offsets: we'll talk about that in lecture 5
- Nevertheless, a positional index expands postings storage *substantially*
- Nevertheless, a positional index is now standardly used because of the power and usefulness of phrase and proximity queries ... whether used explicitly or implicitly in a ranking retrieval system.

Positional index size

- Need an entry for each occurrence, not just once per document
- Index size depends on average document size

- SEC filings, books, even some epic poems ... easily 100,000 terms
- Consider a term with frequency 0.1%

Document size	Postings	Positional postings
1000	1	1
100,000	1	100

Rules of thumb

- A positional index is 2-4 as large as a nonpositional index
- Positional index size 35-50% of volume of original text
- Caveat: all of this holds for "English-like" languages

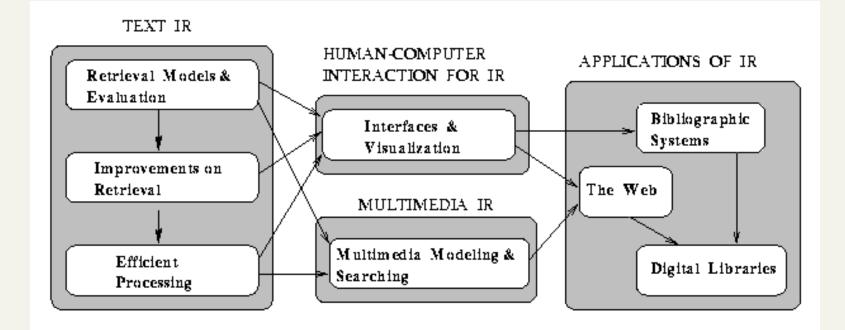
Combination schemes

- These two approaches can be profitably combined
 - For particular phrases ("Michael Jackson", "Britney Spears") it is inefficient to keep on merging positional postings lists

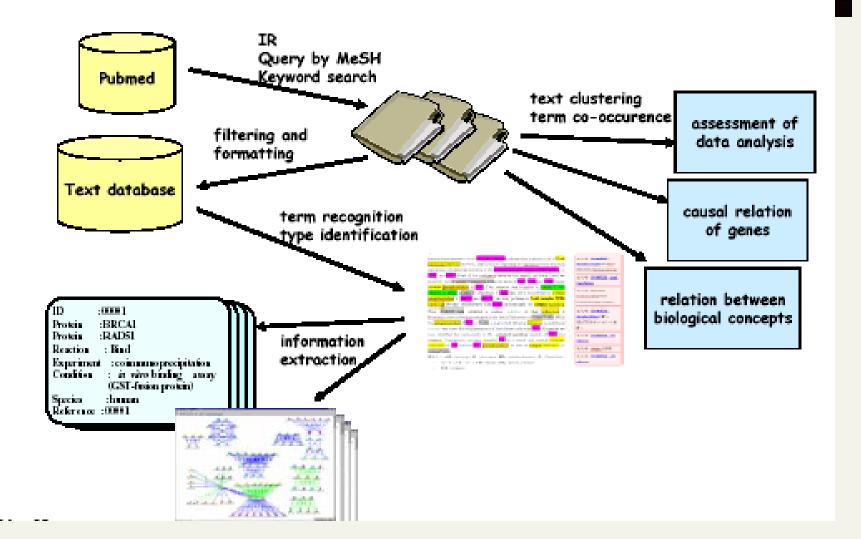
Even more so for phrases like "The Who"

- Williams et al. (2004) evaluate a more sophisticated mixed indexing scheme
 - A typical web query mixture was executed in ¼ of the time of using just a positional index
 - It required 26% more space than having a positional index alone

Research Topics of IR

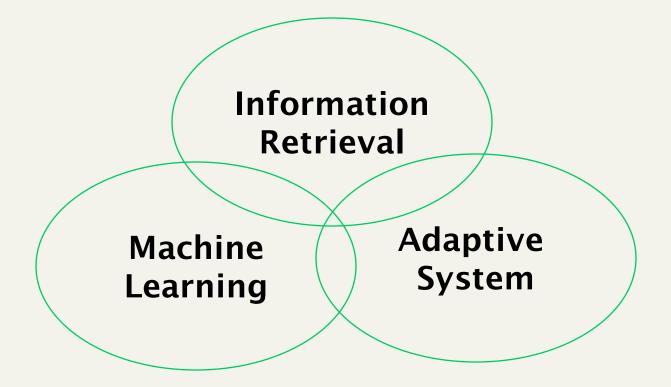


Overview of Text Processing in Biology



Intelligent Information Retrieval

Intelligent Information Retrieval (IIR)



Some Issues in IIR

- Document Clustering
- Automatic Text Categorization
- Feature Selection
- Topic Detection and Tracking
- New Information Detection

Document Clustering

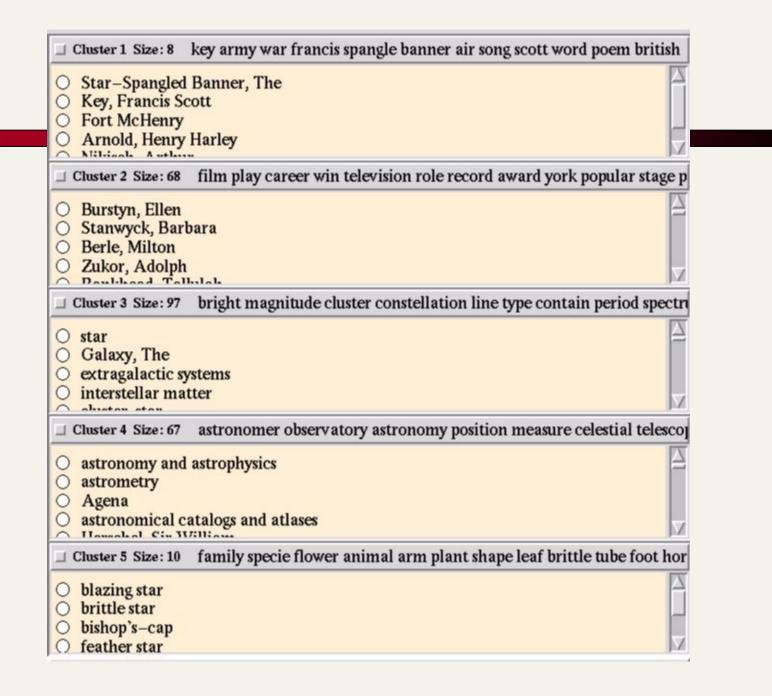
- Technique for analyzing structures and relations in data
- No classes to be identified prior to process
- Intensive literature on
 - medical data
 - census and survey data
 - literature citations
 - document retrieval

Document Clustering

- Web browsing ("Scatter/Gather")
- Taxonomy creation (Yahoo!)
- Term thesaurus development (WordNet)
- Query-log analysis on the web
- User grouping for email routing
- Summarization

Text Clustering

- Finds overall similarities among groups of documents
- Finds overall similarities among groups of tokens
- Picks out some themes, ignores others



Clustering as Document Ranking

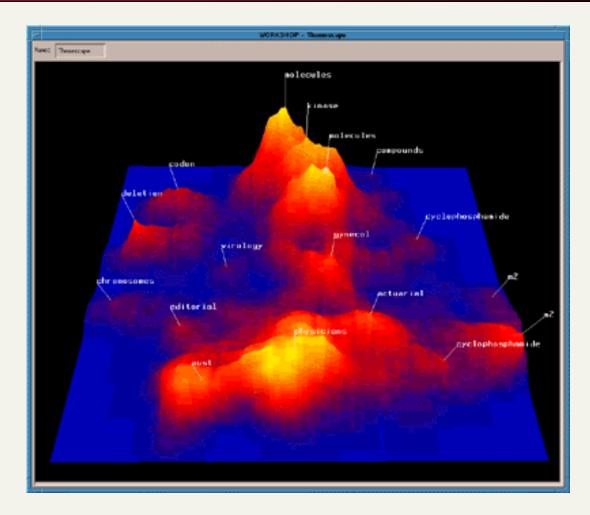
- Cluster entire collection
- Find cluster centroid that best matches the query
- This has been explored extensively
 - it is expensive
 - it doesn't work well

Two Queries: Two Clusterings

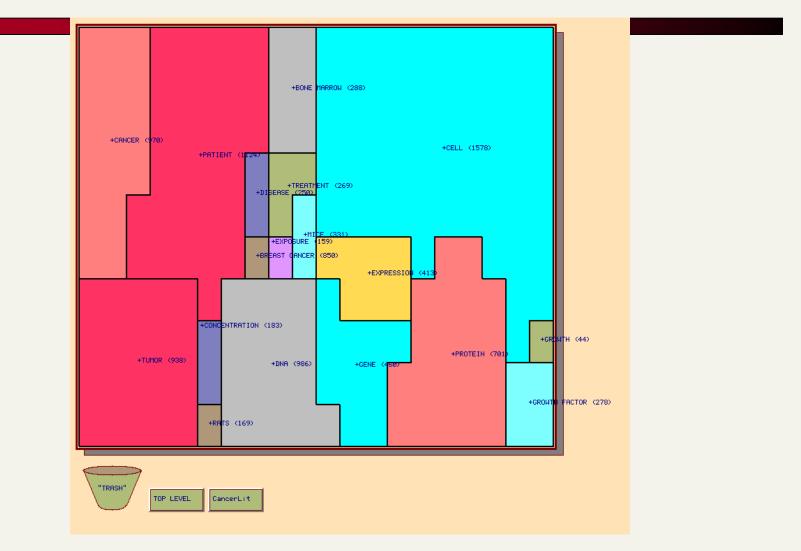
AUTO, CAR, ELECTRIC	AUTO, CAR, SAFETY	
8 control drive accident	6 control inventory integrate .	
25 battery california technology	10 investigation washington	
48 import j. rate honda toyota	12 study fuel death bag air	
16 export international unit japa	n 61 sale domestic truck import .	
3 service employee automatic	11 japan export defect unite	

The main differences are the clusters that are central to the query

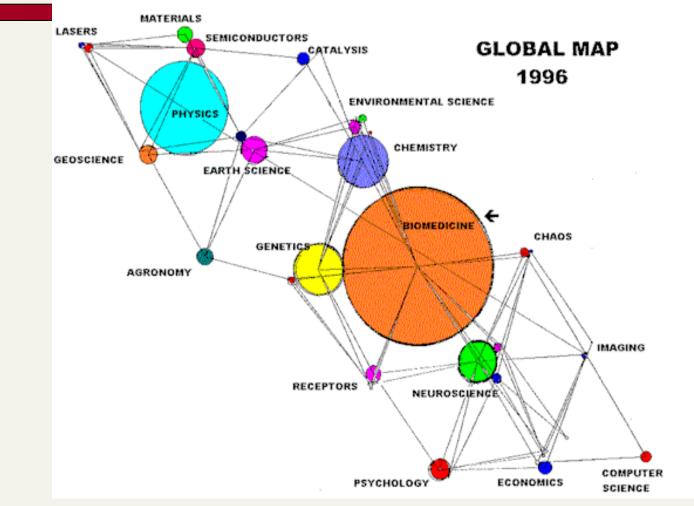
Clustering Multi-Dimensional Document Space (image from Wise et al 95)



Kohonen Feature Maps on Text (from Chen et al., JASIS 49(7))



Co-citation analysis (From Garfield 98)



Co-citation analysis (From Garfield 98)

