
Biomedical Information Retrieval

Lecture 1: Introduction

Information ?

Information Hierarchy

Wisdom

Knowledge

Information

Data

Information Hierarchy

• Data
• The raw material of information

• Information
• Data organized and presented by someone

• Knowledge
• Information read, heard or seen and understood

• Wisdom
• Distilled and integrated knowledge and understanding

What kinds of information are there?

• Text
• books, periodicals, WWW, memos, ads
• published/refeered

• Film
• Photos, other Images
• Broadcast TV, Radio
• Telephone Conversations
• Databases…
• Currently, Internet data is the major player

Big Data !!

6

Big Data !!

7

User Activity on Wikipedia

DARPA's Topological Data
Analysis Program

8

Counting the Library of Congress

• Library of Congress
• National Digital Library Program (NDLP), created in October 1994
• 15-million items from total 160-million item collection
• Books: 20 Terabytes assuming

• 22M books (22,765,967 catalogued books, 109,029,796 items)
• 1 MB per book

• Should also assume
• 13M photographs, 1MB each = 13 TB
• 4M maps, say 200 TB
• 500K files, 1GB each = 500 TB
• 3.5M sound recordings, ~2000 TB

• Grand total: 7 petabytes (7000 terabytes)

Information Life Cycle

Creation

Utilization Searching

Active

Inactive

Semi-Active

Retention/
Mining

Disposition

Discard

Using
Creating

Authoring
Modifying

Organizing
Indexing

Storing
Retrieval

Distribution
Networking

Accessing
Filtering

Issues in Information

 Information Storage
– How and Where is Information stored?

 Retrieving Information.
– How is information recovered from storage
– How to find needed information
– Linked with Accessing/Filtering stage

Key Issues

Creation

Utilization Searching

Active

Inactive

Semi-Active

Retention/
Mining

Disposition

Discard

Using
Creating

Authoring
Modifying

Organizing
Indexing

Storing
Retrieval

Distribution
Networking

Accessing
Filtering

Information Retrieval ?

Some IR History

• Roots in the scientific “Information Explosion” following WWII
• Interest in computer-based IR from mid 1950’s

• H.P. Luhn at IBM (1958)
• Probabilistic models at Rand (Maron & Kuhns) (1960)
• Boolean system development at Lockheed (‘60s)
• Vector Space Model (Salton at Cornell 1965)
• Statistical Weighting methods and theoretical advances

(‘70s)
• Refinements and Advances in application (‘80s)
• User Interfaces, Large-scale testing and application (‘90s)

Search and Retrieval

• Human Aspects
• Information Retrieval Models
• Content Analysis/Zipf Distributions
• Evaluation of IR Systems

• Precision/Recall
• Relevance
• User Studies

• System and Implementation Issues
• Web-Specific Issues
• User Interface Issues
• Special Kinds of Search

Basic assumptions of IR

• Collection: Fixed set of documents
• Goal: Retrieve documents with information that is relevant to user’s

information need and helps him (or her) complete a task

16

General language representations

Pre-trained self-attention models

20

The classic search model

Corpus

TASK

Info Need

Query

Verbal
form

Results

SEARCH
ENGINE

Query
Refinement

Get rid of mice in a
politically correct way

Info about removing mice
without killing them

How do I trap mice alive?

mouse trap

Mis-conception

Mis-translation

Mis-formulation

22

How good are the retrieved docs?

• Precision : Fraction of retrieved docs that are relevant to user’s
information need

• Recall : Fraction of relevant docs in collection that are retrieved
• More precise definitions and measurements to follow in later

lectures

23

Bigger collections

• Consider N = 1M documents, each with about 1K terms.
• Avg 6 bytes/term incl spaces/punctuation

• 6GB of data in the documents.

• Say there are m = 500K distinct terms among these.

24

Can’t build the matrix

• 500K x 1M matrix has half-a-trillion 0’s and 1’s.
• But it has no more than one billion 1’s.

• matrix is extremely sparse.

• What’s a better representation?
• We only record the 1 positions.

25

Why?

Information
need

Index

Pre-process

Parse

Collections

Rank

Query

text input
How is
the index
constructed?

Inverted index

• For each term T, we must store a list of all documents that contain T.
• Do we use an array or a list for this?

27

Brutus

Calpurnia

Caesar

1 2 3 5 8 13 21 34

2 4 8 16 32 64128

13 16

What happens if the word Caesar
is added to document 14?

Inverted index

• Linked lists generally preferred to arrays
• Dynamic space allocation
• Insertion of terms into documents easy
• Space overhead of pointers

28

Brutus

Calpurnia

Caesar

2 4 8 16 32 64 128

2 3 5 8 13 21 34

13 16

1

Dictionary Postings lists
Sorted by docID (more later on why).

Posting

Inverted index construction

Tokenizer

Token stream. Friends Romans Countrymen
Linguistic
modules

Modified tokens. friend roman countryman

Indexer

Inverted index.

friend

roman

countryman

2 4

2

13 16

1

More on
these later.

Documents to
be indexed.

Friends, Romans, countrymen.

Indexer steps

• Sequence of (Modified token, Document ID) pairs.

I did enact Julius
Caesar I was killed

i' the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble

Brutus hath told you
Caesar was ambitious

Doc 2

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Sheet1

		Term		Doc #

		I		1

		did		1

		enact		1

		julius		1

		caesar		1

		I		1

		was		1

		killed		1

		i'		1

		the		1

		capitol		1

		brutus		1

		killed		1

		me		1

		so		2

		let		2

		it		2

		be		2

		with		2

		caesar		2

		the		2

		noble		2

		brutus		2

		hath		2

		told		2

		you		2

		caesar		2

		was		2

		ambitious		2

•Sort by terms.
Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Core indexing step.

Sheet1

		Term		Doc #

		ambitious		2

		be		2

		brutus		1

		brutus		2

		capitol		1

		caesar		1

		caesar		2

		caesar		2

		did		1

		enact		1

		hath		1

		I		1

		I		1

		i'		1

		it		2

		julius		1

		killed		1

		killed		1

		let		2

		me		1

		noble		2

		so		2

		the		1

		the		2

		told		2

		you		2

		was		1

		was		2

		with		2

Sheet1

		Term		Doc #

		I		1

		did		1

		enact		1

		julius		1

		caesar		1

		I		1

		was		1

		killed		1

		i'		1

		the		1

		capitol		1

		brutus		1

		killed		1

		me		1

		so		2

		let		2

		it		2

		be		2

		with		2

		caesar		2

		the		2

		noble		2

		brutus		2

		hath		2

		told		2

		you		2

		caesar		2

		was		2

		ambitious		2

• Multiple term entries in a single
document are merged.

• Frequency information is added.

Term Doc # Term freq
ambitious 2 1
be 2 1
brutus 1 1
brutus 2 1
capitol 1 1
caesar 1 1
caesar 2 2
did 1 1
enact 1 1
hath 2 1
I 1 2
i' 1 1
it 2 1
julius 1 1
killed 1 2
let 2 1
me 1 1
noble 2 1
so 2 1
the 1 1
the 2 1
told 2 1
you 2 1
was 1 1
was 2 1
with 2 1

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Why frequency?
Will discuss later.

Sheet1

		Term		Doc #		Term freq

		ambitious		2		1

		be		2		1

		brutus		1		1

		brutus		2		1

		capitol		1		1

		caesar		1		1

		caesar		2		2

		did		1		1

		enact		1		1

		hath		2		1

		I		1		2

		i'		1		1

		it		2		1

		julius		1		1

		killed		1		2

		let		2		1

		me		1		1

		noble		2		1

		so		2		1

		the		1		1

		the		2		1

		told		2		1

		you		2		1

		was		1		1

		was		2		1

		with		2		1

Sheet1

		Term		Doc #

		ambitious		2

		be		2

		brutus		1

		brutus		2

		capitol		1

		caesar		1

		caesar		2

		caesar		2

		did		1

		enact		1

		hath		1

		I		1

		I		1

		i'		1

		it		2

		julius		1

		killed		1

		killed		1

		let		2

		me		1

		noble		2

		so		2

		the		1

		the		2

		told		2

		you		2

		was		1

		was		2

		with		2

•The result is split into a Dictionary file
and a Postings file.

Doc # Freq
2 1
2 1
1 1
2 1
1 1
1 1
2 2
1 1
1 1
2 1
1 2
1 1
2 1
1 1
1 2
2 1
1 1
2 1
2 1
1 1
2 1
2 1
2 1
1 1
2 1
2 1

Term N docs Coll freq
ambitious 1 1
be 1 1
brutus 2 2
capitol 1 1
caesar 2 3
did 1 1
enact 1 1
hath 1 1
I 1 2
i' 1 1
it 1 1
julius 1 1
killed 1 2
let 1 1
me 1 1
noble 1 1
so 1 1
the 2 2
told 1 1
you 1 1
was 2 2
with 1 1

Term Doc # Freq
ambitious 2 1
be 2 1
brutus 1 1
brutus 2 1
capitol 1 1
caesar 1 1
caesar 2 2
did 1 1
enact 1 1
hath 2 1
I 1 2
i' 1 1
it 2 1
julius 1 1
killed 1 2
let 2 1
me 1 1
noble 2 1
so 2 1
the 1 1
the 2 1
told 2 1
you 2 1
was 1 1
was 2 1
with 2 1

Sheet1

		Doc #		Freq

		2		1

		2		1

		1		1

		2		1

		1		1

		1		1

		2		2

		1		1

		1		1

		2		1

		1		2

		1		1

		2		1

		1		1

		1		2

		2		1

		1		1

		2		1

		2		1

		1		1

		2		1

		2		1

		2		1

		1		1

		2		1

		2		1

Sheet1

		Term		N docs		Coll freq

		ambitious		1		1

		be		1		1

		brutus		2		2

		capitol		1		1

		caesar		2		3

		did		1		1

		enact		1		1

		hath		1		1

		I		1		2

		i'		1		1

		it		1		1

		julius		1		1

		killed		1		2

		let		1		1

		me		1		1

		noble		1		1

		so		1		1

		the		2		2

		told		1		1

		you		1		1

		was		2		2

		with		1		1

Sheet1

		Term		Doc #		Freq

		ambitious		2		1

		be		2		1

		brutus		1		1

		brutus		2		1

		capitol		1		1

		caesar		1		1

		caesar		2		2

		did		1		1

		enact		1		1

		hath		2		1

		I		1		2

		i'		1		1

		it		2		1

		julius		1		1

		killed		1		2

		let		2		1

		me		1		1

		noble		2		1

		so		2		1

		the		1		1

		the		2		1

		told		2		1

		you		2		1

		was		1		1

		was		2		1

		with		2		1

•Where do we pay in storage?

34

Doc # Freq
2 1
2 1
1 1
2 1
1 1
1 1
2 2
1 1
1 1
2 1
1 2
1 1
2 1
1 1
1 2
2 1
1 1
2 1
2 1
1 1
2 1
2 1
2 1
1 1
2 1
2 1

Term N docs Coll freq
ambitious 1 1
be 1 1
brutus 2 2
capitol 1 1
caesar 2 3
did 1 1
enact 1 1
hath 1 1
I 1 2
i' 1 1
it 1 1
julius 1 1
killed 1 2
let 1 1
me 1 1
noble 1 1
so 1 1
the 2 2
told 1 1
you 1 1
was 2 2
with 1 1

Pointers

Terms

Will quantify
the storage,
later.

Sheet1

		Doc #		Freq

		2		1

		2		1

		1		1

		2		1

		1		1

		1		1

		2		2

		1		1

		1		1

		2		1

		1		2

		1		1

		2		1

		1		1

		1		2

		2		1

		1		1

		2		1

		2		1

		1		1

		2		1

		2		1

		2		1

		1		1

		2		1

		2		1

Sheet1

		Term		N docs		Coll freq

		ambitious		1		1

		be		1		1

		brutus		2		2

		capitol		1		1

		caesar		2		3

		did		1		1

		enact		1		1

		hath		1		1

		I		1		2

		i'		1		1

		it		1		1

		julius		1		1

		killed		1		2

		let		1		1

		me		1		1

		noble		1		1

		so		1		1

		the		2		2

		told		1		1

		you		1		1

		was		2		2

		with		1		1

The index we just built

• How do we process a query?
• Later - what kinds of queries can we process?

35

Today’s
focus

Word Frequency vs. Resolving Power (from van Rijsbergen 79)

The most frequent words are not the most descriptive

Upper cut-off

Significant words

Words by rank order

Fr
eq

u
en

cy
 o

f
w

o
rd

s

Lower cut-off

Resolving power of
Significant words

Query processing: AND

• Consider processing the query:
Brutus AND Caesar
• Locate Brutus in the Dictionary;

• Retrieve its postings.
• Locate Caesar in the Dictionary;

• Retrieve its postings.
• “Merge” the two postings:

37

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21
Brutus
Caesar

The merge

• Walk through the two postings simultaneously, in time linear in the
total number of postings entries

38

34

1282 4 8 16 32 64

1 2 3 5 8 13 21

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus
Caesar2 8

If the list lengths are x and y, the merge takes O(x+y)
operations.
Crucial: postings sorted by docID.

Boolean queries: Exact match

• The Boolean Retrieval model is being able to ask a query that is a
Boolean expression:

• Boolean Queries are queries using AND, OR and NOT to join query terms
• Views each document as a set of words
• Is precise: document matches condition or not.

• Primary commercial retrieval tool for 3 decades.
• Professional searchers (e.g., lawyers) still like Boolean queries:

• You know exactly what you’re getting.

39

Boolean queries:
More general merges

•Exercise: Adapt the merge for the queries:
Brutus AND NOT Caesar
Brutus OR NOT Caesar

Can we still run through the merge in time O(x+y)?
What can we achieve?

40

Merging

What about an arbitrary Boolean formula?
(Brutus OR Caesar) AND NOT
(Antony OR Cleopatra)
• Can we always merge in “linear” time?

• Linear in what?

• Can we do better?

41

Query optimization

• What is the best order for query processing?
• Consider a query that is an AND of t terms.
• For each of the t terms, get its postings, then AND them together.

Brutus

Calpurnia

Caesar

1 2 3 5 8 16 21 34

2 4 8 16 32 64128

13 16

Query: Brutus AND Calpurnia AND Caesar
42

Query optimization example

• Process in order of increasing freq:
• start with smallest set, then keep cutting further.

43

Brutus

Calpurnia

Caesar

1 2 3 5 8 13 21 34

2 4 8 16 32 64128

13 16

This is why we kept
freq in dictionary

Execute the query as (Caesar AND Brutus) AND Calpurnia.

More general optimization

•e.g., (madding OR crowd) AND (ignoble OR
strife)

•Get freq’s for all terms.
•Estimate the size of each OR by the sum of its

freq’s (conservative).
•Process in increasing order of OR sizes.

44

Exercise

• Recommend a query
processing order for

 Term Freq
 eyes 213312
 kaleidoscope 87009
 marmalade 107913
 skies 271658
 tangerine 46653
 trees 316812

45

(tangerine OR trees) AND
(marmalade OR skies) AND
(kaleidoscope OR eyes)

hits

		Term		Freq

		eyes		213312

		kaleidoscope		87009

		marmalade		107913

		skies		271658

		tangerine		46653

		trees		316812

Query processing exercises

• If the query is friends AND romans AND (NOT countrymen), how
could we use the freq of countrymen?

• Exercise: Extend the merge to an arbitrary Boolean query. Can we
always guarantee execution in time linear in the total postings size?

• Hint: Begin with the case of a Boolean formula query: in this, each
query term appears only once in the query.

46

What’s ahead in IR?
Beyond term search

• What about phrases?
• Stanford University

• Proximity: Find Gates NEAR Microsoft.
• Need index to capture position information in docs. More later.

• Zones in documents: Find documents with (author = Ullman) AND
(text contains automata).

47

Evidence accumulation

• 1 vs. 0 occurrence of a search term
• 2 vs. 1 occurrence
• 3 vs. 2 occurrences, etc.
• Usually more seems better

• Need term frequency information in docs

48

Ranking search results

• Boolean queries give inclusion or exclusion of docs.
• Often we want to rank/group results

• Need to measure proximity from query to each doc.
• Need to decide whether docs presented to user are singletons, or a group of

docs covering various aspects of the query.

49

IR vs. databases:
Structured vs unstructured data

• Structured data tends to refer to information in “tables”

50

Employee Manager Salary

Smith Jones 50000

Chang Smith 60000

50000Ivy Smith

Typically allows numerical range and exact match
(for text) queries, e.g.,
Salary < 60000 AND Manager = Smith.

Unstructured data

• Typically refers to free text
• Allows

• Keyword queries including operators
• More sophisticated “concept” queries e.g.,

• find all web pages dealing with drug abuse

• Classic model for searching text documents

51

Semi-structured data

• In fact almost no data is “unstructured”
• E.g., this slide has distinctly identified zones such as the Title and

Bullets
• Facilitates “semi-structured” search such as

• Title contains data AND Bullets contain search

… to say nothing of linguistic structure

52

More sophisticated semi-structured search

• Title is about Object Oriented Programming AND Author something
like stro*rup

• where * is the wild-card operator
• Issues:

• how do you process “about”?
• how do you rank results?

• The focus of XML search.

53

Clustering and classification

• Given a set of docs, group them into clusters based on their contents.
• Given a set of topics, plus a new doc D, decide which topic(s) D

belongs to.

54

The web and its challenges

•Unusual and diverse documents
•Unusual and diverse users, queries, information

needs
•Beyond terms, exploit ideas from social

networks
• link analysis, clickstreams ...

•How do search engines work? And how can we
make them better?

55

More sophisticated information retrieval

• Cross-language information retrieval
• Question answering
• Document Summarization
• Text mining
• …

56

	�Biomedical Information Retrieval
	Information ?
	Information Hierarchy
	Information Hierarchy
	What kinds of information are there?
	Big Data !!
	Big Data !!
	投影片編號 8
	Counting the Library of Congress
	Information Life Cycle
	Issues in Information
	Key Issues
	Information Retrieval ?
	Some IR History
	Search and Retrieval�
	Basic assumptions of IR
	General language representations
	Pre-trained self-attention models
	投影片編號 19
	投影片編號 20
	投影片編號 21
	The classic search model
	How good are the retrieved docs?
	Bigger collections
	Can’t build the matrix
	投影片編號 26
	Inverted index
	Inverted index
	Inverted index construction
	Indexer steps
	
	
	
	
	The index we just built
	Word Frequency vs. Resolving Power (from van Rijsbergen 79)
	Query processing: AND
	The merge
	Boolean queries: Exact match
	Boolean queries: �More general merges
	Merging
	Query optimization
	Query optimization example
	More general optimization
	Exercise
	Query processing exercises
	What’s ahead in IR?�Beyond term search
	Evidence accumulation
	Ranking search results
	IR vs. databases:�Structured vs unstructured data
	Unstructured data
	Semi-structured data
	More sophisticated semi-structured search
	Clustering and classification
	The web and its challenges
	More sophisticated information retrieval

